No Arabic abstract
Quantum computing holds the promise of improving the information processing power to levels unreachable by classical computation. Quantum walks are heading the development of quantum algorithms for searching information on graphs more efficiently than their classical counterparts. A quantum-walk-based algorithm that is standing out in the literature is the lackadaisical quantum walk. The lackadaisical quantum walk is an algorithm developed to search two-dimensional grids whose vertices have a self-loop of weight $l$. In this paper, we address several issues related to the application of the lackadaisical quantum walk to successfully search for multiple solutions on grids. Firstly, we show that only one of the two stopping conditions found in the literature is suitable for simulations. We also demonstrate that the final success probability depends on the space density of solutions and the relative distance between solutions. Furthermore, this work generalizes the lackadaisical quantum walk to search for multiple solutions on grids of arbitrary dimensions. In addition, we propose an optimal adjustment of the self-loop weight $l$ for such scenarios of arbitrary dimensions. It turns out the other fits of $l$ found in the literature are particular cases. Finally, we observe a two-to-one relation between the steps of the lackadaisical quantum walk and the ones of Grovers algorithm, which requires modifications in the stopping condition. In conclusion, this work deals with practical issues one should consider when applying the lackadaisical quantum walk, besides expanding the technique to a wider range of search problems.
Adding self-loops at each vertex of a graph improves the performance of quantum walks algorithms over loopless algorithms. Many works approach quantum walks to search for a single marked vertex. In this article, we experimentally address several problems related to quantum walk in the hypercube with self-loops to search for multiple marked vertices. We first investigate the quantum walk in the loopless hypercube. We saw that neighbor vertices are also amplified and that approximately $1/2$ of the system energy is concentrated in them. We show that the optimal value of $l$ for a single marked vertex is not optimal for multiple marked vertices. We define a new value of $l = (n/N)cdot k$ to search multiple marked vertices. Next, we use this new value of $l$ found to analyze the search for multiple marked vertices non-adjacent and show that the probability of success is close to $1$. We also use the new value of $l$ found to analyze the search for several marked vertices that are adjacent and show that the probability of success is directly proportional to the density of marked vertices in the neighborhood. We also show that, in the case where neighbors are marked, if there is at least one non-adjacent marked vertex, the probability of success increases to close to $1$. The results found show that the self-loop value for the quantum walk in the hypercube to search for several marked vertices is $l = (n / N) cdot k $.
We give a quantum algorithm for finding a marked element on the grid when there are multiple marked elements. Our algorithm uses quadratically fewer steps than a random walk on the grid, ignoring logarithmic factors. This is the first known quantum walk that finds a marked element in a number of steps less than the square-root of the extended hitting time. We also give a new tighter upper bound on the extended hitting time of a marked subset, expressed in terms of the hitting times of its members.
We present a quantum algorithm for ranking the nodes on a network in their order of importance. The algorithm is based on a directed discrete-time quantum walk, and works on all directed networks. This algorithm can theoretically be applied to the entire internet, and thus can function as a quantum PageRank algorithm. Our analysis shows that the hierarchy of quantum rank matches well with the hierarchy of classical rank for directed tree network and for non-trivial cyclic networks, the hierarchy of quantum ranks do not exactly match to the hierarchy of the classical rank. This highlights the role of quantum interference and fluctuations in networks and the importance of using quantum algorithms to rank nodes in quantum networks. Another application this algorithm can envision is to model the dynamics on networks mimicking the chemical complexes and rank active centers in order of reactivities. Since discrete-time quantum walks are implementable on current quantum processing systems, this algorithm will also be of practical relevance in analysis of quantum architecture.
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. In this paper, we introduce an optimization of the inversion-by-the-mean step of the algorithm. This optimization serves two purposes: from a practical perspective, it can lead to a performance improvement; from a theoretical one, it leads to a novel interpretation of the actual nature of this step. This step is a reflection, which is realized by (a) cancelling the superposition of a general state to revert to the original all-zeros state, (b) flipping the sign of the amplitude of the all-zeros state, and finally (c) reverting back to the superposition state. Rather than canceling the superposition, our approach allows for going forward to another state that makes the reflection easier. We validate our approach on set and array search, and confirm our results experimentally on real quantum hardware.
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by partitioning the states into classes, whose probabilities are increased at different levels before or during amplification. The partitioning process is based on the binomial distribution. If the classes to which the search target states belong are known in advance, the number of iterations in the Amplitude Amplification algorithm can be drastically reduced compared to the standard version. In the more likely case in which the relevant classes are not known in advance, their selection can be configured at run time, or a random approach can be employed, similar to classical algorithms such as binary search. In particular, we apply this method in the context of our previously introduced Quantum Dictionary pattern, where keys and values are encoded in two separate registers, and the value-encoding method is independent of the type of superposition used in the key register. We consider this type of structure to be the natural setup for search. We confirm the validity of our new approach through experimental results obtained on real quantum hardware, the Honeywell System Model H0 trapped-ion quantum computer.