Do you want to publish a course? Click here

Deterministic Generation of Genuine Tri-Partite Hybrid Atom-Photon Entanglement through Dissipation

67   0   0.0 ( 0 )
 Added by Alberto Marino
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to deterministically generate genuine multi-partite entanglement is fundamental for the advancement of quantum information science. We show that the interaction between entangled twin beams of light and an atomic ensemble under conditions for electromagnetically induced transparency leads to the generation of genuine hybrid tri-partite entanglement between the two input fields and the atomic ensemble. In such a configuration, the system is driven through dissipation to a steady state given by the hybrid entangled state. To show the presence of the genuine hybrid entanglement, we introduce a new approach to treat the atomic operators that makes it possible to show a violation of a tri-partite entanglement criterion based on the properties of the two optical fields and collective properties of the atomic ensemble. Additionally, we show that while each of the input optical fields does not exhibit single beam quadrature squeezing, as the fields propagate through the atomic medium their individual quadratures can become squeezed and in some cases oscillate between the presence and absence of squeezing. Finally, we propose a technique to characterize the tri-partite entanglement through joint measurements of the fields leaving the atomic medium, making such an approach experimentally accessible.



rate research

Read More

We investigate and quantify various measures of bipartite and tripartite entanglement in the context of two and three flavor neutrino oscillations. The bipartite entanglement is analogous to the entanglement swapping resulting from a beam splitter in quantum optics. For the three neutrino systems various measures of tripartite entanglement are explored. The significant result is that a monogamy inequality in terms of negativity leads to a residual entanglement, implying true tripartite entanglement in the three neutrino system. This leads us to an analogy of the three neutrino state with a generalized class of W-state in quantum optics.
We propose a scheme that employs dissipation to deterministically generate entanglement in an ensemble of strongly interacting Rydberg atoms. With a combination of microwave driving between different Rydberg levels and a resonant laser coupling to a short lived atomic state, the ensemble can be driven towards a dark steady state that entangles all atoms. The long-range resonant dipole-dipole interaction between different Rydberg states extends the entanglement beyond the van der Walls interaction range with perspectives for entangling large and distant ensembles.
We consider a dissipative evolution of parametrically-driven qubits-cavity system under the periodical modulation of coupling energy between two subsystems, which leads to the amplification of counterrotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists to stabilize entanglement and quantum correlations between qubits even in the steady state and to compensate finite qubit relaxation. On the contrary, energy dissipation in qubit subsystem results in the enhanced photon production from vacuum for strong modulation, but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in context of quantum information processing and might be of importance for dissipative quantum state engineering.
We give an introduction to the theory of multi-partite entanglement. We begin by describing the coordinate system of the field: Are we dealing with pure or mixed states, with single or multiple copies, what notion of locality is being used, do we aim to classify states according to their type of entanglement or to quantify it? Building on the general theory of multi-partite entanglement - to the extent that it has been achieved - we turn to explaining important classes of multi-partite entangled states, including matrix product states, stabilizer and graph states, bosonic and fermionic Gaussian states, addressing applications in condensed matter theory. We end with a brief discussion of various applications that rely on multi-partite entangled states: quantum networks, measurement-based quantum computing, non-locality, and quantum metrology.
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length. In addition we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well defined spin states. We find that the state of the single atom dephases on a timescale of 150 $mu$s, which represents an important step toward long-distance quantum networking with individual neutral atoms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا