No Arabic abstract
Clustering is one of the fundamental tasks in computer vision and pattern recognition. Recently, deep clustering methods (algorithms based on deep learning) have attracted wide attention with their impressive performance. Most of these algorithms combine deep unsupervised representation learning and standard clustering together. However, the separation of representation learning and clustering will lead to suboptimal solutions because the two-stage strategy prevents representation learning from adapting to subsequent tasks (e.g., clustering according to specific cues). To overcome this issue, efforts have been made in the dynamic adaption of representation and cluster assignment, whereas current state-of-the-art methods suffer from heuristically constructed objectives with representation and cluster assignment alternatively optimized. To further standardize the clustering problem, we audaciously formulate the objective of clustering as finding a precise feature as the cue for cluster assignment. Based on this, we propose a general-purpose deep clustering framework which radically integrates representation learning and clustering into a single pipeline for the first time. The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features, and imposes an entropy minimization on the distribution of the cluster assignment by a dedicated variational algorithm. Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods on the handwritten digit recognition, fashion recognition, face recognition and object recognition benchmark datasets.
Convolutional neural networks for visual recognition require large amounts of training samples and usually benefit from data augmentation. This paper proposes PatchMix, a data augmentation method that creates new samples by composing patches from pairs of images in a grid-like pattern. These new samples ground truth labels are set as proportional to the number of patches from each image. We then add a set of additional losses at the patch-level to regularize and to encourage good representations at both the patch and image levels. A ResNet-50 model trained on ImageNet using PatchMix exhibits superior transfer learning capabilities across a wide array of benchmarks. Although PatchMix can rely on random pairings and random grid-like patterns for mixing, we explore evolutionary search as a guiding strategy to discover optimal grid-like patterns and image pairing jointly. For this purpose, we conceive a fitness function that bypasses the need to re-train a model to evaluate each choice. In this way, PatchMix outperforms a base model on CIFAR-10 (+1.91), CIFAR-100 (+5.31), Tiny Imagenet (+3.52), and ImageNet (+1.16) by significant margins, also outperforming previous state-of-the-art pairwise augmentation strategies.
Recent state-of-the-art semi-supervised learning (SSL) methods use a combination of image-based transformations and consistency regularization as core components. Such methods, however, are limited to simple transformations such as traditional data augmentation or convex combinations of two images. In this paper, we propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations. Importantly, these transformations also use information from both within-class and across-class prototypical representations that we extract through clustering. We use features already computed across iterations by storing them in a memory bank, obviating the need for significant extra computation. These transformations, combined with traditional image-based augmentation, are then used as part of the consistency-based regularization loss. We demonstrate that our method is comparable to current state of art for smaller datasets (CIFAR-10 and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and mini-Imagenet where we achieve significant gains over the state of art (textit{e.g.,} absolute 17.44% gain on mini-ImageNet). We further test our method on DomainNet, demonstrating better robustness to out-of-domain unlabeled data, and perform rigorous ablations and analysis to validate the method.
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to unseen ones so that the latter can be recognised without any training samples. This is made possible by learning a projection function between a feature space and a semantic space (e.g. attribute space). Considering the seen and unseen classes as two domains, a big domain gap often exists which challenges ZSL. Inspired by the fact that an unseen class is not exactly `unseen if it belongs to the same superclass as a seen class, we propose a novel inductive ZSL model that leverages superclasses as the bridge between seen and unseen classes to narrow the domain gap. Specifically, we first build a class hierarchy of multiple superclass layers and a single class layer, where the superclasses are automatically generated by data-driven clustering over the semantic representations of all seen and unseen class names. We then exploit the superclasses from the class hierarchy to tackle the domain gap challenge in two aspects: deep feature learning and projection function learning. First, to narrow the domain gap in the feature space, we integrate a recurrent neural network (RNN) defined with the superclasses into a convolutional neural network (CNN), in order to enforce the superclass hierarchy. Second, to further learn a transferrable projection function for ZSL, a novel projection function learning method is proposed by exploiting the superclasses to align the two domains. Importantly, our transferrable feature and projection learning methods can be easily extended to a closely related task -- few-shot learning (FSL). Extensive experiments show that the proposed model significantly outperforms the state-of-the-art alternatives in both ZSL and FSL tasks.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-identification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
Existing self-supervised learning methods learn representation by means of pretext tasks which are either (1) discriminating that explicitly specify which features should be separated or (2) aligning that precisely indicate which features should be closed together, but ignore the fact how to jointly and principally define which features to be repelled and which ones to be attracted. In this work, we combine the positive aspects of the discriminating and aligning methods, and design a hybrid method that addresses the above issue. Our method explicitly specifies the repulsion and attraction mechanism respectively by discriminative predictive task and concurrently maximizing mutual information between paired views sharing redundant information. We qualitatively and quantitatively show that our proposed model learns better features that are more effective for the diverse downstream tasks ranging from classification to semantic segmentation. Our experiments on nine established benchmarks show that the proposed model consistently outperforms the existing state-of-the-art results of self-supervised and transfer learning protocol.