Do you want to publish a course? Click here

Concurrent Discrimination and Alignment for Self-Supervised Feature Learning

117   0   0.0 ( 0 )
 Added by Anjan Dutta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing self-supervised learning methods learn representation by means of pretext tasks which are either (1) discriminating that explicitly specify which features should be separated or (2) aligning that precisely indicate which features should be closed together, but ignore the fact how to jointly and principally define which features to be repelled and which ones to be attracted. In this work, we combine the positive aspects of the discriminating and aligning methods, and design a hybrid method that addresses the above issue. Our method explicitly specifies the repulsion and attraction mechanism respectively by discriminative predictive task and concurrently maximizing mutual information between paired views sharing redundant information. We qualitatively and quantitatively show that our proposed model learns better features that are more effective for the diverse downstream tasks ranging from classification to semantic segmentation. Our experiments on nine established benchmarks show that the proposed model consistently outperforms the existing state-of-the-art results of self-supervised and transfer learning protocol.



rate research

Read More

Most of the existing self-supervised feature learning methods for 3D data either learn 3D features from point cloud data or from multi-view images. By exploring the inherent multi-modality attributes of 3D objects, in this paper, we propose to jointly learn modal-invariant and view-invariant features from different modalities including image, point cloud, and mesh with heterogeneous networks for 3D data. In order to learn modal- and view-invariant features, we propose two types of constraints: cross-modal invariance constraint and cross-view invariant constraint. Cross-modal invariance constraint forces the network to maximum the agreement of features from different modalities for same objects, while the cross-view invariance constraint forces the network to maximum agreement of features from different views of images for same objects. The quality of learned features has been tested on different downstream tasks with three modalities of data including point cloud, multi-view images, and mesh. Furthermore, the invariance cross different modalities and views are evaluated with the cross-modal retrieval task. Extensive evaluation results demonstrate that the learned features are robust and have strong generalizability across different tasks.
Photometric loss is widely used for self-supervised depth and egomotion estimation. However, the loss landscapes induced by photometric differences are often problematic for optimization, caused by plateau landscapes for pixels in textureless regions or multiple local minima for less discriminative pixels. In this work, feature-metric loss is proposed and defined on feature representation, where the feature representation is also learned in a self-supervised manner and regularized by both first-order and second-order derivatives to constrain the loss landscapes to form proper convergence basins. Comprehensive experiments and detailed analysis via visualization demonstrate the effectiveness of the proposed feature-metric loss. In particular, our method improves state-of-the-art methods on KITTI from 0.885 to 0.925 measured by $delta_1$ for depth estimation, and significantly outperforms previous method for visual odometry.
Recent state-of-the-art semi-supervised learning (SSL) methods use a combination of image-based transformations and consistency regularization as core components. Such methods, however, are limited to simple transformations such as traditional data augmentation or convex combinations of two images. In this paper, we propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations. Importantly, these transformations also use information from both within-class and across-class prototypical representations that we extract through clustering. We use features already computed across iterations by storing them in a memory bank, obviating the need for significant extra computation. These transformations, combined with traditional image-based augmentation, are then used as part of the consistency-based regularization loss. We demonstrate that our method is comparable to current state of art for smaller datasets (CIFAR-10 and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and mini-Imagenet where we achieve significant gains over the state of art (textit{e.g.,} absolute 17.44% gain on mini-ImageNet). We further test our method on DomainNet, demonstrating better robustness to out-of-domain unlabeled data, and perform rigorous ablations and analysis to validate the method.
Self-supervised learning, which benefits from automatically constructing labels through pre-designed pretext task, has recently been applied for strengthen supervised learning. Since previous self-supervised pretext tasks are based on input, they may incur huge additional training overhead. In this paper we find that features in CNNs can be also used for self-supervision. Thus we creatively design the emph{feature-based pretext task} which requires only a small amount of additional training overhead. In our task we discard different particular regions of features, and then train the model to distinguish these different features. In order to fully apply our feature-based pretext task in supervised learning, we also propose a novel learning framework containing multi-classifiers for further improvement. Original labels will be expanded to joint labels via self-supervision of feature transformations. With more semantic information provided by our self-supervised tasks, this approach can train CNNs more effectively. Extensive experiments on various supervised learning tasks demonstrate the accuracy improvement and wide applicability of our method.
In this work, we propose a novel methodology for self-supervised learning for generating global and local attention-aware visual features. Our approach is based on training a model to differentiate between specific image transformations of an input sample and the patched images. Utilizing this approach, the proposed method is able to outperform the previous best competitor by 1.03% on the Tiny-ImageNet dataset and by 2.32% on the STL-10 dataset. Furthermore, our approach outperforms the fully-supervised learning method on the STL-10 dataset. Experimental results and visualizations show the capability of successfully learning global and local attention-aware visual representations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا