Do you want to publish a course? Click here

DORO: Distributional and Outlier Robust Optimization

96   0   0.0 ( 0 )
 Added by Runtian Zhai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Many machine learning tasks involve subpopulation shift where the testing data distribution is a subpopulation of the training distribution. For such settings, a line of recent work has proposed the use of a variant of empirical risk minimization(ERM) known as distributionally robust optimization (DRO). In this work, we apply DRO to real, large-scale tasks with subpopulation shift, and observe that DRO performs relatively poorly, and moreover has severe instability. We identify one direct cause of this phenomenon: sensitivity of DRO to outliers in the datasets. To resolve this issue, we propose the framework of DORO, for Distributional and Outlier Robust Optimization. At the core of this approach is a refined risk function which prevents DRO from overfitting to potential outliers. We instantiate DORO for the Cressie-Read family of Renyi divergence, and delve into two specific instances of this family: CVaR and $chi^2$-DRO. We theoretically prove the effectiveness of the proposed method, and empirically show that DORO improves the performance and stability of DRO with experiments on large modern datasets, thereby positively addressing the open question raised by Hashimoto et al., 2018.



rate research

Read More

98 - Jingge Wang , Yang Li , Liyan Xie 2021
Given multiple source domains, domain generalization aims at learning a universal model that performs well on any unseen but related target domain. In this work, we focus on the domain generalization scenario where domain shifts occur among class-conditional distributions of different domains. Existing approaches are not sufficiently robust when the variation of conditional distributions given the same class is large. In this work, we extend the concept of distributional robust optimization to solve the class-conditional domain generalization problem. Our approach optimizes the worst-case performance of a classifier over class-conditional distributions within a Wasserstein ball centered around the barycenter of the source conditional distributions. We also propose an iterative algorithm for learning the optimal radius of the Wasserstein balls automatically. Experiments show that the proposed framework has better performance on unseen target domain than approaches without domain generalization.
Reinforcement learning algorithms can acquire policies for complex tasks autonomously. However, the number of samples required to learn a diverse set of skills can be prohibitively large. While meta-reinforcement learning methods have enabled agents to leverage prior experience to adapt quickly to new tasks, their performance depends crucially on how close the new task is to the previously experienced tasks. Current approaches are either not able to extrapolate well, or can do so at the expense of requiring extremely large amounts of data for on-policy meta-training. In this work, we present model identification and experience relabeling (MIER), a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time. Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data, more easily than policies and value functions. These dynamics models can then be used to continue training policies and value functions for out-of-distribution tasks without using meta-reinforcement learning at all, by generating synthetic experience for the new task.
We give the first polynomial-time algorithm for performing linear or polynomial regression resilient to adversarial corruptions in both examples and labels. Given a sufficiently large (polynomial-size) training set drawn i.i.d. from distribution D and subsequently corrupted on some fraction of points, our algorithm outputs a linear function whose squared error is close to the squared error of the best-fitting linear function with respect to D, assuming that the marginal distribution of D over the input space is emph{certifiably hypercontractive}. This natural property is satisfied by many well-studied distributions such as Gaussian, strongly log-concave distributions and, uniform distribution on the hypercube among others. We also give a simple statistical lower bound showing that some distributional assumption is necessary to succeed in this setting. These results are the first of their kind and were not known to be even information-theoretically possible prior to our work. Our approach is based on the sum-of-squares (SoS) method and is inspired by the recent applications of the method for parameter recovery problems in unsupervised learning. Our algorithm can be seen as a natural convex relaxation of the following conceptually simple non-convex optimization problem: find a linear function and a large subset of the input corrupted sample such that the least squares loss of the function over the subset is minimized over all possible large subsets.
Normalizing flows are prominent deep generative models that provide tractable probability distributions and efficient density estimation. However, they are well known to fail while detecting Out-of-Distribution (OOD) inputs as they directly encode the local features of the input representations in their latent space. In this paper, we solve this overconfidence issue of normalizing flows by demonstrating that flows, if extended by an attention mechanism, can reliably detect outliers including adversarial attacks. Our approach does not require outlier data for training and we showcase the efficiency of our method for OOD detection by reporting state-of-the-art performance in diverse experimental settings. Code available at https://github.com/ComputationalRadiationPhysics/InFlow .
To improve the sample efficiency of policy-gradient based reinforcement learning algorithms, we propose implicit distributional actor-critic (IDAC) that consists of a distributional critic, built on two deep generator networks (DGNs), and a semi-implicit actor (SIA), powered by a flexible policy distribution. We adopt a distributional perspective on the discounted cumulative return and model it with a state-action-dependent implicit distribution, which is approximated by the DGNs that take state-action pairs and random noises as their input. Moreover, we use the SIA to provide a semi-implicit policy distribution, which mixes the policy parameters with a reparameterizable distribution that is not constrained by an analytic density function. In this way, the policys marginal distribution is implicit, providing the potential to model complex properties such as covariance structure and skewness, but its parameter and entropy can still be estimated. We incorporate these features with an off-policy algorithm framework to solve problems with continuous action space and compare IDAC with state-of-the-art algorithms on representative OpenAI Gym environments. We observe that IDAC outperforms these baselines in most tasks. Python code is provided.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا