Do you want to publish a course? Click here

Sharp Hardy-Sobolev-Mazya, Adams and Hardy-Adams inequalities on quaternionic hyperbolic spaces and the Cayley hyperbolic plane

174   0   0.0 ( 0 )
 Added by Guozhen Lu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Though Adams and Hardy-Adams inequalities can be extended to general symmetric spaces of noncompact type fairly straightforwardly by following closely the systematic approach developed in our early works on real and complex hyperbolic spaces, higher order Poincare-Sobolev and Hardy-Sobolev-Mazya inequalities are more difficult to establish. The main purpose of this goal is to establish the Poincare-Sobolev and Hardy-Sobolev-Mazya inequalities on quaternionic hyperbolic spaces and the Cayley hyperbolic plane. A crucial part of our work is to establish appropriate factorization theorems on these spaces which are of their independent interests. To this end, we need to identify and introduce the ``Quaternionic Gellers operators and ``Octonionic Gellers operators which have been absent on these spaces. Combining the factorization theorems and the Geller type operators with the Helgason-Fourier analysis on symmetric spaces, the precise heat and Bessel-Green-Riesz kernel estimates and the Kunze-Stein phenomenon for connected real simple groups of real rank one with finite center, we succeed to establish the higher order Poincare-Sobolev and Hardy-Sobolev-Mazya inequalities on quaternionic hyperbolic spaces and the Cayley hyperbolic plane. The kernel estimates required to prove these inequalities are also sufficient for us to establish, as a byproduct, the Adams and Hardy-Adams inequalities on these spaces. This paper, together with our earlier works, completes our study of the factorization theorems, higher order Poincare-Sobolev, Hardy-Sobolev-Mazya, Adams and Hardy-Adams inequalities on all rank one symmetric spaces of noncompact type.



rate research

Read More

188 - Guozhen Lu , Qiaohua Yang 2021
This paper continues the program initiated in the works by the authors [60], [61] and [62] and by the authors with Li [51] and [52] to establish higher order Poincare-Sobolev, Hardy-Sobolev-Mazya, Adams and Hardy-Adams inequalities on real hyperbolic spaces using the method of Helgason-Fourier analysis on the hyperbolic spaces. The aim of this paper is to establish such inequalities on the Siegel domains and complex hyperbolic spaces. Firstly, we prove a factorization theorem for the operators on the complex hyperbolic space which is closely related to Geller operator, as well as the CR invariant differential operators on the Heisenberg group and CR sphere. Secondly, by using, among other things, the Kunze-Stein phenomenon on a closed linear group $SU(1,n)$ and Helgason-Fourier analysis techniques on the complex hyperbolic spaces, we establish the Poincare-Sobolev, Hardy-Sobolev-Mazya inequality on the Siegel domain $mathcal{U}^{n}$ and the unit ball $mathbb{B}_{mathbb{C}}^{n}$. Finally, we establish the sharp Hardy-Adams inequalities and sharp Adams type inequalities on Sobolev spaces of any positive fractional order on the complex hyperbolic spaces. The factorization theorem we proved is of its independent interest in the Heisenberg group and CR sphere and CR invariant differential operators therein.
176 - Guozhen Lu , Qiaohua Yang 2019
Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev-Mazya inequality in the upper half space of dimension $n$ coincides with the best $frac{n-1}{2}$-th order Sobolev constant when $n$ is odd and $ngeq9$ (See Theorem 1.6). We will also establish a lower bound of the coefficient of the Hardy term for the $k-$th order Hardy-Sobolev-Mazya inequality in upper half space in the remaining cases of dimension $n$ and $k$-th order derivatives (see Theorem 1.7). Precise expressions and optimal bounds for Greens functions of the operator $ -Delta_{mathbb{H}}-frac{(n-1)^{2}}{4}$ on the hyperbolic space $mathbb{B}^n$ and operators of the product form are given, where $frac{(n-1)^{2}}{4}$ is the spectral gap for the Laplacian $-Delta_{mathbb{H}}$ on $mathbb{B}^n$. Finally, we give the precise expression and optimal pointwise bound of Greens function of the Paneitz and GJMS operators on hyperbolic space, which are of their independent interest (see Theorem 1.10).
165 - Guozhen Lu , Qiaohua Yang 2017
We establish sharp Hardy-Adams inequalities on hyperbolic space $mathbb{B}^{4}$ of dimension four. Namely, we will show that for any $alpha>0$ there exists a constant $C_{alpha}>0$ such that [ int_{mathbb{B}^{4}}(e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2})dV=16int_{mathbb{B}^{4}}frac{e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2}}{(1-|x|^{2})^{4}}dxleq C_{alpha}. ] for any $uin C^{infty}_{0}(mathbb{B}^{4})$ with [ int_{mathbb{B}^{4}}left(-Delta_{mathbb{H}}-frac{9}{4}right)(-Delta_{mathbb{H}}+alpha)ucdot udVleq1. ] As applications, we obtain a sharpened Adams inequality on hyperbolic space $mathbb{B}^{4}$ and an inequality which improves the classical Adams inequality and the Hardy inequality simultaneously. The later inequality is in the spirit of the Hardy-Trudinger-Moser inequality on a disk in dimension two given by Wang and Ye [37] and on any convex planar domain by the authors [26]. The tools of fractional Laplacian, Fourier transform and the Plancherel formula on hyperbolic spaces and symmetric spaces play an important role in our work.
219 - Guozhen Lu , Qiaohua Yang 2017
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality on hyperbolic spaces which is of its independent interest. We also give an alternative proof of Benguria, Frank and Loss work concerning the sharp constant in the Hardy-Sobolev-Mazya inequality in the three dimensional upper half space. Finally, we show the sharp constant in the Hardy-Sobolev-Mazya inequality for bi-Laplacian in the upper half space of dimension five coincides with the Sobolev constant.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا