In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no conserved currents. For those theories, we compute the large dimension limit (h/c>>1) of the OPE spectral decomposition of the Virasoro vacuum. We then propose a kernel ansatz that generalizes the spectral decomposition beyond h/c>>1. Finally, we estimate the corrections to the OPE spectral densities from the inclusion of the lightest operator in the spectrum.
We constrain the spectrum of two-dimensional unitary, compact conformal field theories with central charge c > 1 using modular bootstrap. Upper bounds on the gap in the dimension of primary operators of any spin, as well as in the dimension of scalar primaries, are computed numerically as functions of the central charge using semi-definite programming. Our bounds refine those of Hellerman and Friedan-Keller, and are in some cases saturated by known CFTs. In particular, we show that unitary CFTs with c < 8 must admit relevant deformations, and that a nontrivial bound on the gap of scalar primaries exists for c < 25. We also study bounds on the dimension gap in the presence of twist gaps, bounds on the degeneracy of operators, and demonstrate how extremal spectra which maximize the degeneracy at the gap can be determined numerically.
We apply the analytic conformal bootstrap method to study weakly coupled conformal gauge theories in four dimensions. We employ twist conformal blocks to find the most general form of the one-loop four-point correlation function of identical scalar operators, without any reference to Feynman calculations. The method relies only on symmetries of the model. In particular, it does not require introducing any regularisation and it is free from the redundancies usually associated with the Feynman approach. By supplementing the general solution with known data for a small number of operators, we recover explicit forms of one-loop correlation functions of four Konishi operators as well as of four half-BPS operators $mathcal{O}_{20}$ in $mathcal{N}=4$ super Yang-Mills.
We study the Virasoro conformal block decomposition of the genus two partition function of a two-dimensional CFT by expanding around a Z3-invariant Riemann surface that is a three-fold cover of the Riemann sphere branched at four points, and explore constraints from genus two modular invariance and unitarity. In particular, we find critical surfaces that constrain the structure constants of a CFT beyond what is accessible via the crossing equation on the sphere.
We derive an asymptotic formula for operator product expansion coefficients of heavy operators in two dimensional conformal field theory. This follows from modular invariance of the genus two partition function, and generalises the asymptotic formula for the density of states from torus modular invariance. The resulting formula is universal, depending only on the central charge, but involves the asymptotic behaviour of genus two conformal blocks. We use monodromy techniques to compute the asymptotics of the relevant blocks at large central charge to determine the behaviour explicitly.
We explore the large spin spectrum in two-dimensional conformal field theories with a finite twist gap, using the modular bootstrap in the lightcone limit. By recursively solving the modular crossing equations associated to different $PSL(2,mathbb{Z})$ elements, we identify the universal contribution to the density of large spin states from the vacuum in the dual channel. Our result takes the form of a sum over $PSL(2,mathbb{Z})$ elements, whose leading term generalizes the usual Cardy formula to a wider regime. Rather curiously, the contribution to the density of states from the vacuum becomes negative in a specific limit, which can be canceled by that from a non-vacuum Virasoro primary whose twist is no bigger than $c-1over16$. This suggests a new upper bound of $c-1over 16$ on the twist gap in any $c>1$ compact, unitary conformal field theory with a vacuum, which would in particular imply that pure AdS$_3$ gravity does not exist. We confirm this negative density of states in the pure gravity partition function by Maloney, Witten, and Keller. We generalize our discussion to theories with $mathcal{N}=(1,1)$ supersymmetry, and find similar results.