Do you want to publish a course? Click here

Learning to See by Looking at Noise

70   0   0.0 ( 0 )
 Added by Jonas Wulff
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Current vision systems are trained on huge datasets, and these datasets come with costs: curation is expensive, they inherit human biases, and there are concerns over privacy and usage rights. To counter these costs, interest has surged in learning from cheaper data sources, such as unlabeled images. In this paper we go a step further and ask if we can do away with real image datasets entirely, instead learning from noise processes. We investigate a suite of image generation models that produce images from simple random processes. These are then used as training data for a visual representation learner with a contrastive loss. We study two types of noise processes, statistical image models and deep generative models under different random initializations. Our findings show that it is important for the noise to capture certain structural properties of real data but that good performance can be achieved even with processes that are far from realistic. We also find that diversity is a key property to learn good representations. Datasets, models, and code are available at https://mbaradad.github.io/learning_with_noise.



rate research

Read More

We present a learning-based approach for removing unwanted obstructions, such as window reflections, fence occlusions or raindrops, from a short sequence of images captured by a moving camera. Our method leverages the motion differences between the background and the obstructing elements to recover both layers. Specifically, we alternate between estimating dense optical flow fields of the two layers and reconstructing each layer from the flow-warped images via a deep convolutional neural network. The learning-based layer reconstruction allows us to accommodate potential errors in the flow estimation and brittle assumptions such as brightness consistency. We show that training on synthetically generated data transfers well to real images. Our results on numerous challenging scenarios of reflection and fence removal demonstrate the effectiveness of the proposed method.
We present a learning-based approach for removing unwanted obstructions, such as window reflections, fence occlusions, or adherent raindrops, from a short sequence of images captured by a moving camera. Our method leverages motion differences between the background and obstructing elements to recover both layers. Specifically, we alternate between estimating dense optical flow fields of the two layers and reconstructing each layer from the flow-warped images via a deep convolutional neural network. This learning-based layer reconstruction module facilitates accommodating potential errors in the flow estimation and brittle assumptions, such as brightness consistency. We show that the proposed approach learned from synthetically generated data performs well to real images. Experimental results on numerous challenging scenarios of reflection and fence removal demonstrate the effectiveness of the proposed method.
Background objects occluded in some views of a light field (LF) camera can be seen by other views. Consequently, occluded surfaces are possible to be reconstructed from LF images. In this paper, we handle the LF de-occlusion (LF-DeOcc) problem using a deep encoder-decoder network (namely, DeOccNet). In our method, sub-aperture images (SAIs) are first given to the encoder to incorporate both spatial and angular information. The encoded representations are then used by the decoder to render an occlusionfree center-view SAI. To the best of our knowledge, DeOccNet is the first deep learning-based LF-DeOcc method. To handle the insufficiency of training data, we propose an LF synthesis approach to embed selected occlusion masks into existing LF images. Besides, several synthetic and realworld LFs are developed for performance evaluation. Experimental results show that, after training on the generated data, our DeOccNet can effectively remove foreground occlusions and achieves superior performance as compared to other state-of-the-art methods. Source codes are available at: https://github.com/YingqianWang/DeOccNet.
An autostereogram, a.k.a. magic eye image, is a single-image stereogram that can create visual illusions of 3D scenes from 2D textures. This paper studies an interesting question that whether a deep CNN can be trained to recover the depth behind an autostereogram and understand its content. The key to the autostereogram magic lies in the stereopsis - to solve such a problem, a model has to learn to discover and estimate disparity from the quasi-periodic textures. We show that deep CNNs embedded with disparity convolution, a novel convolutional layer proposed in this paper that simulates stereopsis and encodes disparity, can nicely solve such a problem after being sufficiently trained on a large 3D object dataset in a self-supervised fashion. We refer to our method as ``NeuralMagicEye. Experiments show that our method can accurately recover the depth behind autostereograms with rich details and gradient smoothness. Experiments also show the completely different working mechanisms for autostereogram perception between neural networks and human eyes. We hope this research can help people with visual impairments and those who have trouble viewing autostereograms. Our code is available at url{https://jiupinjia.github.io/neuralmagiceye/}.
Image classification models have achieved satisfactory performance on many datasets, sometimes even better than human. However, The model attention is unclear since the lack of interpretability. This paper investigates the fidelity and interpretability of model attention. We propose an Explainable Attribute-based Multi-task (EAT) framework to concentrate the model attention on the discriminative image area and make the attention interpretable. We introduce attributes prediction to the multi-task learning network, helping the network to concentrate attention on the foreground objects. We generate attribute-based textual explanations for the network and ground the attributes on the image to show visual explanations. The multi-model explanation can not only improve user trust but also help to find the weakness of network and dataset. Our framework can be generalized to any basic model. We perform experiments on three datasets and five basic models. Results indicate that the EAT framework can give multi-modal explanations that interpret the network decision. The performance of several recognition approaches is improved by guiding network attention.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا