No Arabic abstract
We consider thermodynamically consistent autonomous Markov jump processes displaying a macroscopic limit in which the logarithm of the probability distribution is proportional to a scale-independent rate function (i.e., a large deviations principle is satisfied). In order to provide an explicit expression for the probability distribution valid away from equilibrium, we propose a linear response theory performed at the level of the rate function. We show that the first order non-equilibrium contribution to the steady state rate function, $g(x)$, satisfies $u(x)cdot abla g(x) = -beta dot W(x)$ where the vector field $u(x)$ defines the macroscopic deterministic dynamics, and the scalar field $dot W(x)$ equals the rate at which work is performed on the system in a given state $x$. This equation provides a practical way to determine $g(x)$, significantly outperforms standard linear response theory applied at the level of the probability distribution, and approximates the rate function surprisingly well in some far-from-equilibrium conditions. The method applies to a wealth of physical and chemical systems, that we exemplify by two analytically tractable models - an electrical circuit and an autocatalytic chemical reaction network - both undergoing a non-equilibrium transition from a monostable phase to a bistable phase. Our approach can be easily generalized to transient probabilities and non-autonomous dynamics. Moreover, its recursive application generates a virtual flow in the probability space which allows to determine the steady state rate function arbitrarily far from equilibrium.
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We determine the conditioned large deviation function of density by a microscopic calculation. We then show that it can be expressed in terms of the solutions of Hamilton-Jacobi equations, which can be written for general diffusive systems using a fluctuating hydrodynamics description.
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperatures. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of non-interacting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semi-classical picture of quasi-particles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of non-interacting fermions and bosons are discussed.
We extend Kubos Linear Response Theory (LRT) to periodic input signals with arbitrary shapes and obtain exact analytical formulas for the energy dissipated by the system for a variety of signals. These include the square and sawtooth waves, or pulsed signals such as the rectangular, sine and $delta$-pulses. It is shown that for a given input energy, the dissipation may be substantially augmented by exploiting different signal shapes. We also apply our results in the context of magnetic hyperthermia, where small magnetic particles are used as local heating centers in oncological treatments.
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a fluctuation dissipation theorem for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices.