Do you want to publish a course? Click here

New experimental limits on double-beta decay of osmium

165   0   0.0 ( 0 )
 Added by Fedor Danevich
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Double-beta processes in $^{184}$Os and $^{192}$Os were searched for over 15851 h at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. by using a 118 g ultra-pure osmium sample installed on the endcap of a 112 cm$^3$ ultra-low-background broad-energy germanium detector. New limits on double-electron capture and electron capture with positron emission in $^{184}$Os were set at the level of $lim T_{1/2} sim 10^{16}-10^{17}$ yr. In particular the $2 u$2K and $2 u$KL decays of $^{184}$Os to the ground state of $^{184}$W are restricted as $T_{1/2}geq3.0times 10^{16}$ yr and $T_{1/2}geq2.0times 10^{16}$ yr, respectively. A lower limit on the half-life for the double-beta decay of $^{192}$Os to the first excited level of $^{192}$Pt was set as $lim T_{1/2}=2.0times 10^{20}$ yr at 90% C.L.



rate research

Read More

A radiopure cadmium tungstate crystal scintillator, enriched in 106-Cd to 66%, with mass of 216 g (106-CdWO4) was used in coincidence with four ultra-low background HPGe detectors contained in a single cryostat to search for double beta decay processes in 106-Cd. New improved half-life limits on the double beta processes in 106-Cd have been set on the level of 1e20-1e21 yr after 13085 h of data taking deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (Italy). In particular, the limit on the two neutrino electron capture with positron emission T1/2 >1.1e21 yr, has reached the region of theoretical predictions. The resonant neutrinoless double electron captures to the 2718, 2741 and 2748 keV excited states of 106-Pd are restricted on the level of T1/2 > 8.5e20 - 1.4e21 yr.
106 - J. V. Dawson 2009
An array of sixteen 1 cm^3 CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double-beta decay searches with such devices. As one of the double-beta decay experiments with the highest granularity the 4 x 4 array accumulated an overall exposure of 18 kg days. The setup and performance of the array is described. Half-life limits for various double-beta decay modes of Cd, Zn and Te isotopes are obtained. No signal has been found, but several limits beyond 10^20 years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation. An improved limit for the beta^+/EC decay of Te 120 is given.
A new phase of 116Cd double beta decay experiment is in progress in the Solotvina Underground Laboratory. Four enriched 116CdWO4 scintillators with total mass 339 g are used in a set up, whose active shield is made of 15 natural CdWO4 crystals (20.6 kg). The background rate in the energy interval 2.5-3.2 MeV is 0.03 counts/y*kg*keV. The half-life for 2-neutrino 2-beta decay of 116Cd is measured as T{1/2}(2-neutrino) = [2.6+-0.1(stat)-0.4+0.7}(syst)]*10**19 y. The T{1/2} limits for neutrinoless 2-beta decay of 116Cd are set as T{1/2} >= 0.7(2.5)*10**23 y at 90%(68%) C.L. for transition to ground state of 116Sn, while for decays to the first 2+ and second 0+ excited levels of 116Sn as T{1/2}>=1.3(4.8)*10**22 y and >=0.7(2.4)*10**22 y with 90%(68%) C.L., respectively. For 0-neutrino 2-beta decay with emission of one or two Majorons, the limits are T{1/2}(0-neutrino M1) >=3.7(5.8)*10**21 y and T{1/2}(0-neutrino M2)>=5.9(9.4)*10**20 y at 90%(68%) C.L. Restrictions on the value of the neutrino mass, right-handed admixtures in the weak interaction, and the neutrino-Majoron coupling constant are derived as: m(neutrino)<=2.6(1.4) eV, eta <=3.9*10**-8, lambda <=3.4*10**-6, and g{M}<= 12(9.5)*10**-5 at 90%(68%) C.L., respectively.
$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involved in the $betabeta$ matrix element calculation. Enriched $^{48}$Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T$_{1/2}^{2 u} = (4.3^{+2.4}_{-1.1} [{rm stat.}] pm 1.4 [{rm syst.}]) times 10^{19}$ years, compatible with the shell model calculations.
We present the results obtained in the development of scintillating Double Beta Decay bolometers. Several Mo and Cd based crystals were tested with the bolometric technique. The scintillation light was measured through a second independent bolometer. A 140 g CdWO_4 crystal was run in a 417 h live time measurement. Thanks to the scintillation light, the alpha background is easily discriminated resulting in zero counts above the 2615 keV gamma line of Thallium 208. These results, combined with an extremely easy light detector operation, represent the first tangible proof demonstrating the feasibility of this kind of technique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا