Do you want to publish a course? Click here

On some graph-cordial Abelian groups

74   0   0.0 ( 0 )
 Added by Sylwia Cichacz
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$; the edge $uv$ receives the label $f (u) + f (v)$. A graph $G$ is $A$-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. Patrias and Pechenik studied the larger class of finite abelian groups $A$ such that all path graphs are $A$-cordial. They posed a conjecture that all but finitely many paths graphs are $A$-cordial for any Abelian group $A$. In this paper we solve this conjecture. Moreover we show that all cycle graphs are $A$-cordial for any Abelian group $A$ of odd order.



rate research

Read More

We study a natural discrete Bochner-type inequality on graphs, and explore its merit as a notion of curvature in discrete spaces. An appealing feature of this discrete version seems to be that it is fairly straightforward to compute this notion of curvature parameter for several specific graphs of interest - particularly, abelian groups, slices of the hypercube, and the symmetric group under various sets of generators. We further develop this notion by deriving Buser-type inequalities (a la Ledoux), relating functional and isoperimetric constants associated with a graph. Our derivations provide a tight bound on the Cheeger constant (i.e., the edge-isoperimetric constant) in terms of the spectral gap, for graphs with nonnegative curvature, particularly, the class of abelian Cayley graphs - a result of independent interest.
189 - Koji Momihara 2020
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an important role in the theory. On the other hand, Polhill (2010) gave a construction of Paley type partial difference sets (conference graphs) based on a special system of building blocks, called a covering extended building set, and proved that there exists a Paley type partial difference set in an abelian group of order $9^iv^4$ for any odd positive integer $v>1$ and any $i=0,1$. His result covers all orders of nonelementary abelian groups in which Paley type partial difference sets exist. In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups by extending the theory of building blocks. The constructions are large generalizations of Polhills construction. In particular, we show that for a positive integer $m$ and elementary abelian groups $G_i$, $i=1,2,ldots,s$, of order $q_i^4$ such that $2m,|,q_i+1$, there exists a decomposition of the complete graph on the abelian group $G=G_1times G_2times cdotstimes G_s$ by strongly regular Cayley graphs with negative Latin square type parameters $(u^2,c(u+1),- u+c^2+3 c,c^2+ c)$, where $u=q_1^2q_2^2cdots q_s^2$ and $c=(u-1)/m$. Such strongly regular decompositions were previously known only when $m=2$ or $G$ is a $p$-group. Moreover, we find one more new infinite family of decompositions of the complete graphs by Latin square type strongly regular Cayley graphs. Thus, we obtain many strongly regular graphs with new parameters.
75 - Dave Witte Morris 2020
Let $X$ be a connected Cayley graph on an abelian group of odd order, such that no two distinct vertices of $X$ have exactly the same neighbours. We show that the direct product $X times K_2$ (also called the canonical double cover of $X$) has only the obvious automorphisms (namely, the ones that come from automorphisms of its factors $X$ and $K_2$). This means that $X$ is stable. The proof is short and elementary. The theory of direct products implies that $K_2$ can be replaced with members of a much more general family of connected graphs.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference size of $G$ and is denoted by $Delta[G]$. The fraction $eth[G]:=frac{Delta[G]}{sqrt{|G|}}$ is called the difference characteristic of $G$. Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number $pge 11$, any finite Abelian $p$-group $G$ has difference characteristic $eth[G]<frac{sqrt{p}-1}{sqrt{p}-3}cdotsup_{kinmathbb N}eth[C_{p^k}]<sqrt{2}cdotfrac{sqrt{p}-1}{sqrt{p}-3}$. Also we calculate the difference sizes of all Abelian groups of cardinality $<96$.
Hovey introduced $A$-cordial labelings as a generalization of cordial and harmonious labelings cite{Hovey}. If $A$ is an Abelian group, then a labeling $f colon V (G) rightarrow A$ of the vertices of some graph $G$ induces an edge labeling on $G$, the edge $uv$ receives the label $f (u) + f (v)$. A graph $G$ is $A$-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. The problem of $A$-cordial labelings of graphs can be naturally extended for hypergraphs. It was shown that not every $2$-uniform hypertree (i.e., tree) admits a $Z_2times Z_2$-cordial labeling cite{Pechnik}. The situation changes if we consider $p$-uniform hypetrees for a bigger $p$. We prove that a $p$-uniform hypertree is $Z_2times Z_2$-cordial for any $p>2$, and so is every path hypergraph in which all edges have size at least~3. The property is not valid universally in the class of hypergraphs of maximum degree~1, for which we provide a necessary and sufficient condition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا