Do you want to publish a course? Click here

Stability of Cayley graphs on abelian groups of odd order

76   0   0.0 ( 0 )
 Added by Dave Witte Morris
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a connected Cayley graph on an abelian group of odd order, such that no two distinct vertices of $X$ have exactly the same neighbours. We show that the direct product $X times K_2$ (also called the canonical double cover of $X$) has only the obvious automorphisms (namely, the ones that come from automorphisms of its factors $X$ and $K_2$). This means that $X$ is stable. The proof is short and elementary. The theory of direct products implies that $K_2$ can be replaced with members of a much more general family of connected graphs.



rate research

Read More

189 - Koji Momihara 2020
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an important role in the theory. On the other hand, Polhill (2010) gave a construction of Paley type partial difference sets (conference graphs) based on a special system of building blocks, called a covering extended building set, and proved that there exists a Paley type partial difference set in an abelian group of order $9^iv^4$ for any odd positive integer $v>1$ and any $i=0,1$. His result covers all orders of nonelementary abelian groups in which Paley type partial difference sets exist. In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups by extending the theory of building blocks. The constructions are large generalizations of Polhills construction. In particular, we show that for a positive integer $m$ and elementary abelian groups $G_i$, $i=1,2,ldots,s$, of order $q_i^4$ such that $2m,|,q_i+1$, there exists a decomposition of the complete graph on the abelian group $G=G_1times G_2times cdotstimes G_s$ by strongly regular Cayley graphs with negative Latin square type parameters $(u^2,c(u+1),- u+c^2+3 c,c^2+ c)$, where $u=q_1^2q_2^2cdots q_s^2$ and $c=(u-1)/m$. Such strongly regular decompositions were previously known only when $m=2$ or $G$ is a $p$-group. Moreover, we find one more new infinite family of decompositions of the complete graphs by Latin square type strongly regular Cayley graphs. Thus, we obtain many strongly regular graphs with new parameters.
153 - Dave Witte Morris 2017
We show that if G is a finite group whose commutator subgroup [G,G] has order 2p, where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.
63 - Daniel Gromada 2021
We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a general strategy for determining the quantum automorphism groups of such graphs. Applying this procedure, we find the quantum symmetries of the halved cube graph, the folded cube graph and the Hamming graphs.
Let $G$ be a finitely generated group acting faithfully and properly discontinuously by homeomorphisms on a planar surface $X subseteq mathbb{S}^2$. We prove that $G$ admits such an action that is in addition co-compact, provided we can replace $X$ by another surface $Y subseteq mathbb{S}^2$. We also prove that if a group $H$ has a finitely generated Cayley (multi-)graph $C$ covariantly embeddable in $mathbb{S}^2$, then $C$ can be chosen so as to have no infinite path on the boundary of a face. The proofs of these facts are intertwined, and the classes of groups they define coincide. In the orientation-preserving case they are exactly the (isomorphism types of) finitely generated Kleinian function groups. We construct a finitely generated planar Cayley graph whose group is not in this class. In passing, we observe that the Freudenthal compactification of every planar surface is homeomorphic to the sphere.
97 - Dave Witte Morris 2021
Let $G$ be a finite group. We show that if $|G| = pqrs$, where $p$, $q$, $r$, and $s$ are distinct odd primes, then every connected Cayley graph on $G$ has a hamiltonian cycle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا