No Arabic abstract
The COVID-19 pandemic has drastically changed accepted norms globally. Within the past year, masks have been used as a public health response to limit the spread of the virus. This sudden change has rendered many face recognition based access control, authentication and surveillance systems ineffective. Official documents such as passports, driving license and national identity cards are enrolled with fully uncovered face images. However, in the current global situation, face matching systems should be able to match these reference images with masked face images. As an example, in an airport or security checkpoint it is safer to match the unmasked image of the identifying document to the masked person rather than asking them to remove the mask. We find that current facial recognition techniques are not robust to this form of occlusion. To address this unique requirement presented due to the current circumstance, we propose a set of re-purposed datasets and a benchmark for researchers to use. We also propose a contrastive visual representation learning based pre-training workflow which is specialized to masked vs unmasked face matching. We ensure that our method learns robust features to differentiate people across varying data collection scenarios. We achieve this by training over many different datasets and validating our result by testing on various holdout datasets. The specialized weights trained by our method outperform standard face recognition features for masked to unmasked face matching. We believe the provided synthetic mask generating code, our novel training approach and the trained weights from the masked face models will help in adopting existing face recognition systems to operate in the current global environment. We open-source all contributions for broader use by the research community.
Improving sample efficiency is a key research problem in reinforcement learning (RL), and CURL, which uses contrastive learning to extract high-level features from raw pixels of individual video frames, is an efficient algorithm~citep{srinivas2020curl}. We observe that consecutive video frames in a game are highly correlated but CURL deals with them independently. To further improve data efficiency, we propose a new algorithm, masked contrastive representation learning for RL, that takes the correlation among consecutive inputs into consideration. In addition to the CNN encoder and the policy network in CURL, our method introduces an auxiliary Transformer module to leverage the correlations among video frames. During training, we randomly mask the features of several frames, and use the CNN encoder and Transformer to reconstruct them based on the context frames. The CNN encoder and Transformer are jointly trained via contrastive learning where the reconstructed features should be similar to the ground-truth ones while dissimilar to others. During inference, the CNN encoder and the policy network are used to take actions, and the Transformer module is discarded. Our method achieves consistent improvements over CURL on $14$ out of $16$ environments from DMControl suite and $21$ out of $26$ environments from Atari 2600 Games. The code is available at https://github.com/teslacool/m-curl.
We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of models. Benefiting from MCL, each model can learn extra contrastive knowledge from others, leading to more meaningful feature representations for visual recognition tasks. We emphasize that MCL is conceptually simple yet empirically powerful. It is a generic framework that can be applied to both supervised and self-supervised representation learning. Experimental results on supervised and self-supervised image classification, transfer learning and few-shot learning show that MCL can lead to consistent performance gains, demonstrating that MCL can guide the network to generate better feature representations.
We develop an approach to learning visual representations that embraces multimodal data, driven by a combination of intra- and inter-modal similarity preservation objectives. Unlike existing visual pre-training methods, which solve a proxy prediction task in a single domain, our method exploits intrinsic data properties within each modality and semantic information from cross-modal correlation simultaneously, hence improving the quality of learned visual representations. By including multimodal training in a unified framework with different types of contrastive losses, our method can learn more powerful and generic visual features. We first train our model on COCO and evaluate the learned visual representations on various downstream tasks including image classification, object detection, and instance segmentation. For example, the visual representations pre-trained on COCO by our method achieve state-of-the-art top-1 validation accuracy of $55.3%$ on ImageNet classification, under the common transfer protocol. We also evaluate our method on the large-scale Stock images dataset and show its effectiveness on multi-label image tagging, and cross-modal retrieval tasks.
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2x filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
With the explosion of digital data in recent years, continuously learning new tasks from a stream of data without forgetting previously acquired knowledge has become increasingly important. In this paper, we propose a new continual learning (CL) setting, namely ``continual representation learning, which focuses on learning better representation in a continuous way. We also provide two large-scale multi-step benchmarks for biometric identification, where the visual appearance of different classes are highly relevant. In contrast to requiring the model to recognize more learned classes, we aim to learn feature representation that can be better generalized to not only previously unseen images but also unseen classes/identities. For the new setting, we propose a novel approach that performs the knowledge distillation over a large number of identities by applying the neighbourhood selection and consistency relaxation strategies to improve scalability and flexibility of the continual learning model. We demonstrate that existing CL methods can improve the representation in the new setting, and our method achieves better results than the competitors.