Do you want to publish a course? Click here

Vertical Federated Learning without Revealing Intersection Membership

118   0   0.0 ( 0 )
 Added by Jiankai Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Vertical Federated Learning (vFL) allows multiple parties that own different attributes (e.g. features and labels) of the same data entity (e.g. a person) to jointly train a model. To prepare the training data, vFL needs to identify the common data entities shared by all parties. It is usually achieved by Private Set Intersection (PSI) which identifies the intersection of training samples from all parties by using personal identifiable information (e.g. email) as sample IDs to align data instances. As a result, PSI would make sample IDs of the intersection visible to all parties, and therefore each party can know that the data entities shown in the intersection also appear in the other parties, i.e. intersection membership. However, in many real-world privacy-sensitive organizations, e.g. banks and hospitals, revealing membership of their data entities is prohibited. In this paper, we propose a vFL framework based on Private Set Union (PSU) that allows each party to keep sensitive membership information to itself. Instead of identifying the intersection of all training samples, our PSU protocol generates the union of samples as training instances. In addition, we propose strategies to generate synthetic features and labels to handle samples that belong to the union but not the intersection. Through extensive experiments on two real-world datasets, we show our framework can protect the privacy of the intersection membership while maintaining the model utility.

rate research

Read More

Recently, Graph Neural Network (GNN) has achieved remarkable success in various real-world problems on graph data. However in most industries, data exists in the form of isolated islands and the data privacy and security is also an important issue. In this paper, we propose FedVGCN, a federated GCN learning paradigm for privacy-preserving node classification task under data vertically partitioned setting, which can be generalized to existing GCN models. Specifically, we split the computation graph data into two parts. For each iteration of the training process, the two parties transfer intermediate results to each other under homomorphic encryption. We conduct experiments on benchmark data and the results demonstrate the effectiveness of FedVGCN in the case of GraphSage.
Recently researchers have studied input leakage problems in Federated Learning (FL) where a malicious party can reconstruct sensitive training inputs provided by users from shared gradient. It raises concerns about FL since input leakage contradicts the privacy-preserving intention of using FL. Despite a relatively rich literature on attacks and defenses of input reconstruction in Horizontal FL, input leakage and protection in vertical FL starts to draw researchers attention recently. In this paper, we study how to defend against input leakage attacks in Vertical FL. We design an adversarial training-based framework that contains three modules: adversarial reconstruction, noise regularization, and distance correlation minimization. Those modules can not only be employed individually but also applied together since they are independent to each other. Through extensive experiments on a large-scale industrial online advertising dataset, we show our framework is effective in protecting input privacy while retaining the model utility.
Horizontal Federated learning (FL) handles multi-client data that share the same set of features, and vertical FL trains a better predictor that combine all the features from different clients. This paper targets solving vertical FL in an asynchronous fashion, and develops a simple FL method. The new method allows each client to run stochastic gradient algorithms without coordination with other clients, so it is suitable for intermittent connectivity of clients. This method further uses a new technique of perturbed local embedding to ensure data privacy and improve communication efficiency. Theoretically, we present the convergence rate and privacy level of our method for strongly convex, nonconvex and even nonsmooth objectives separately. Empirically, we apply our method to FL on various image and healthcare datasets. The results compare favorably to centralized and synchronous FL methods.
Vertical federated learning (VFL) attracts increasing attention due to the emerging demands of multi-party collaborative modeling and concerns of privacy leakage. In the real VFL applications, usually only one or partial parties hold labels, which makes it challenging for all parties to collaboratively learn the model without privacy leakage. Meanwhile, most existing VFL algorithms are trapped in the synchronous computations, which leads to inefficiency in their real-world applications. To address these challenging problems, we propose a novel {bf VF}L framework integrated with new {bf b}ackward updating mechanism and {bf b}ilevel asynchronous parallel architecture (VF{${textbf{B}}^2$}), under which three new algorithms, including VF{${textbf{B}}^2$}-SGD, -SVRG, and -SAGA, are proposed. We derive the theoretical results of the convergence rates of these three algorithms under both strongly convex and nonconvex conditions. We also prove the security of VF{${textbf{B}}^2$} under semi-honest threat models. Extensive experiments on benchmark datasets demonstrate that our algorithms are efficient, scalable and lossless.
273 - Wensheng Xia , Ying Li , Lan Zhang 2021
Vertical federated learning is a collaborative machine learning framework to train deep leaning models on vertically partitioned data with privacy-preservation. It attracts much attention both from academia and industry. Unfortunately, applying most existing vertical federated learning methods in real-world applications still faces two daunting challenges. First, most existing vertical federated learning methods have a strong assumption that at least one party holds the complete set of labels of all data samples, while this assumption is not satisfied in many practical scenarios, where labels are horizontally partitioned and the parties only hold partial labels. Existing vertical federated learning methods can only utilize partial labels, which may lead to inadequate model update in end-to-end backpropagation. Second, computational and communication resources vary in parties. Some parties with limited computational and communication resources will become the stragglers and slow down the convergence of training. Such straggler problem will be exaggerated in the scenarios of horizontally partitioned labels in vertical federated learning. To address these challenges, we propose a novel vertical federated learning framework named Cascade Vertical Federated Learning (CVFL) to fully utilize all horizontally partitioned labels to train neural networks with privacy-preservation. To mitigate the straggler problem, we design a novel optimization objective which can increase stragglers contribution to the trained models. We conduct a series of qualitative experiments to rigorously verify the effectiveness of CVFL. It is demonstrated that CVFL can achieve comparable performance (e.g., accuracy for classification tasks) with centralized training. The new optimization objective can further mitigate the straggler problem comparing with only using the asynchronous aggregation mechanism during training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا