Do you want to publish a course? Click here

Stream processors and comodels

90   0   0.0 ( 0 )
 Added by Richard Garner
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In 2009, Ghani, Hancock and Pattinson gave a coalgebraic characterisation of stream processors $A^mathbb{N} to B^mathbb{N}$ drawing on ideas of Brouwerian constructivism. Their stream processors have an intensional character; in this paper, we give a corresponding coalgebraic characterisation of extensional stream processors, i.e., the set of continuous functions $A^mathbb{N} to B^mathbb{N}$. Our account sites both our result and that of op. cit. within the apparatus of comodels for algebraic effects originating with Power-Shkaravska.



rate research

Read More

76 - Richard Garner 2020
It is well established that equational algebraic theories, and the monads they generate, can be used to encode computational effects. An important insight of Power and Shkaravska is that comodels of an algebraic theory T -- i.e., models in the opposite category Set^op -- provide a suitable environment for evaluating the computational effects encoded by T. As already noted by Power and Shkaravska, taking comodels yields a functor from accessible monads to accessible comonads on Set. In this paper, we show that this functor is part of an adjunction -- the costructure-cosemantics adjunction of the title -- and undertake a thorough investigation of its properties. We show that, on the one hand, the cosemantics functor takes its image in what we term the presheaf comonads induced by small categories; and that, on the other, costructure takes its image in the presheaf monads induced by small categories. In particular, the cosemantics comonad of an accessible monad will be induced by an explicitly-described category called its behaviour category that encodes the static and dynamic properties of the comodels. Similarly, the costructure monad of an accessible comonad will be induced by a behaviour category encoding static and dynamic properties of the comonad coalgebras. We tie these results together by showing that the costructure-cosemantics adjunction is idempotent, with fixpoints to either side given precisely by the presheaf monads and comonads. Along the way, we illustrate the value of our results with numerous examples drawn from computation and mathematics.
Motivated by recent work on weak distributive laws and their applications to coalgebraic semantics, we investigate the algebraic nature of semialgebras for a monad. These are algebras for the underlying functor of the monad subject to the associativity axiom alone-the unit axiom from the definition of an Eilenberg-Moore algebras is dropped. We prove that if the underlying category has coproducts, then semialgebras for a monad M are in fact the Eilenberg-Moore algebras for a suitable monad structure on the functor id + M , which we call the semifree monad M^s. We also provide concrete algebraic presentations for semialgebras for the maybe monad, the semigroup monad and the finite distribution monad. A second contribution is characterizing the weak distributive laws of the form M T $Rightarrow$ T M as strong distributive laws M^s T $Rightarrow$ T M^s subject to an additional condition.
In this short note we study the semantics of two basic computational effects, exceptions and states, from a new point of view. In the handling of exceptions we dissociate the control from the elementary operation which recovers from the exception. In this way it becomes apparent that there is a duality, in the categorical sense, between exceptions and states.
209 - Bas Spitters 2016
Coquands cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions: 1. Johnstones topological topos was created to present the geometric realization of simplicial sets as a geometric morphism between toposes. Johnstone shows that simplicial sets classify strict linear orders with disjoint endpoints and that (classically) the unit interval is such an order. Here we show that it can also be a target for cubical realization by showing that Coquands cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval in the topos of cubical sets, we construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets.
89 - Nicolas Behr 2021
Tracelets are the intrinsic carriers of causal information in categorical rewriting systems. In this work, we assemble tracelets into a symmetric monoidal decomposition space, inducing a cocommutative Hopf algebra of tracelets. This Hopf algebra captures important combinatorial and algebraic aspects of rewriting theory, and is motivated by applications of its representation theory to stochastic rewriting systems such as chemical reaction networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا