Do you want to publish a course? Click here

Tracelet Hopf algebras and decomposition spaces

90   0   0.0 ( 0 )
 Added by Nicolas Behr
 Publication date 2021
and research's language is English
 Authors Nicolas Behr




Ask ChatGPT about the research

Tracelets are the intrinsic carriers of causal information in categorical rewriting systems. In this work, we assemble tracelets into a symmetric monoidal decomposition space, inducing a cocommutative Hopf algebra of tracelets. This Hopf algebra captures important combinatorial and algebraic aspects of rewriting theory, and is motivated by applications of its representation theory to stochastic rewriting systems such as chemical reaction networks.



rate research

Read More

A Hopf algebra is co-Frobenius when it has a nonzero integral. It is proved that the composition length of the indecomposable injective comodules over a co-Frobenius Hopf algebra is bounded. As a consequence, the coradical filtration of a co-Frobenius Hopf algebra is finite; this confirms a conjecture by Sorin Du{a}scu{a}lescu and the first author. The proof is of categorical nature and the same result is obtained for Frobenius tensor categories of subexponential growth. A family of co-Frobenius Hopf algebras that are not of finite type over their Hopf socles is constructed, answering so in the negative another question by the same authors.
144 - Juan Cuadra , Bojana Femic 2009
A deeper understanding of recent computations of the Brauer group of Hopf algebras is attained by explaining why a direct product decomposition for this group holds and describing the non-interpreted factor occurring in it. For a Hopf algebra $B$ in a braided monoidal category $C$, and under certain assumptions on the braiding (fulfilled if $C$ is symmetric), we construct a sequence for the Brauer group $BM(C;B)$ of $B$-module algebras, generalizing Beatties one. It allows one to prove that $BM(C;B) cong Br(C) times Gal(C;B),$ where $Br(C)$ is the Brauer group of $C$ and $Gal(C;B)$ the group of $B$-Galois objects. We also show that $BM(C;B)$ contains a subgroup isomorphic to $Br(C) times Hc(C;B,I),$ where $Hc(C;B,I)$ is the second Sweedler cohomology group of $B$ with values in the unit object $I$ of $C$. These results are applied to the Brauer group of a quasi-triangular Hopf algebra that is a Radford biproduct $B times H$, where $H$ is a usual Hopf algebra over a field $K$, the Hopf subalgebra generated by the quasi-triangular structure $R$ is contained in $H$ and $B$ is a Hopf algebra in the category ${}_HM$ of left $H$-modules. The Hopf algebras whose Brauer group was recently computed fit this framework. We finally show that $BM(K,H,R) times Hc({}_HM;B,K)$ is a subgroup of the Brauer group $BM(K,B times H,R),$ confirming the suspicion that a certain cohomology group of $B times H$ (second lazy cohomology group was conjectured) embeds into $BM(K,B times H,R).$ New examples of Brauer groups of quasi-triangular Hopf algebras are computed using this sequence.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
The quiver Hopf algebras are classified by means of ramification systems with irreducible representations. This leads to the classification of Nichols algebras over group algebras and pointed Hopf algebras of type one.
Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide new solutions of quantum Yang-Baxter equation and lead to a construction of a new family of endo-functors of the category of $H_{bf q}(W)$-modules. Hecke-Hopf algebras for the symmetric group are related to Fomin-Kirillov algebras, for an arbitrary Coxeter group $W$ the Demazure part of ${bf H}(W)$ is being acted upon by generalized braided derivatives which generate the corresponding (generalized) Nichols algebra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا