Do you want to publish a course? Click here

Quantum Efficiency and Oscillator Strength of InGaAs Quantum Dots for Single-Photon Sources emitting in the Telecommunication O-Band

123   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate experimental results based on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the internal quantum efficiency (IQE) of InGaAs quantum dots (QDs). Using a strain-reducing layer (SRL) these QDs can be employed for the manufacturing of single-photon sources (SPS) emitting in the telecom O-Band. The OS and IQE are evaluated by determining the radiative and non-radiative decay rate under variation of the optical density of states at the position of the QD as proposed and applied in J. Johansen et al. Phys. Rev. B 77, 073303 (2008) for InGaAs QDs emitting at wavelengths below 1 $mu$m. For this purpose, we perform measurements on a QD sample for different thicknesses of the capping layer realized by a controlled wet-chemical etching process. From numeric modelling the radiative and nonradiative decay rates dependence on the capping layer thickness, we determine an OS of 24.6 $pm$ 3.2 and a high IQE of about (85 $pm$ 10)% for the long-wavelength InGaAs QDs.



rate research

Read More

We present rigorous and intuitive master equation models to study on-demand single photon sources from pulse-excited quantum dots coupled to cavities. We consider three methods of source excitation: resonant pi-pulse, off-resonant phonon-assisted inversion, and two-photon excitation of a biexciton-exciton cascade, and investigate the effect of the pulse excitation process on the quantum indistinguishability, efficiency, and purity of emitted photons. By explicitly modelling the time-dependent pulsed excitation process in a manner which captures non-Markovian effects associated with coupling to photon and phonon reservoirs, we find that photons of near-unity indistinguishability can be emitted with over 90% efficiency for all these schemes, with the off-resonant schemes not necessarily requiring polarization filtering due to the frequency separation of the excitation pulse, and allowing for very high single photon purities. Furthermore, the off-resonant methods are shown to be robust over certain parameter regimes, with less stringent requirements on the excitation pulse duration in particular. We also derive a semi-analytical simplification of our master equation for the off-resonant drive, which gives insight into the important role that exciton-phonon decoupling for a strong drive plays in the off-resonant phonon-assisted inversion process
Most quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measurements to overcome inherent channel losses. This concept requires on-demand single-photon sources with a high degree of multi-photon suppression and high indistinguishability within each repeater node. For a successful operation of the repeater, a spectral matching of remote quantum light sources is essential. We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network based on optical fibers. A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding. Here the thin gold layer acts simultaneously as an electrical contact, strain transmission medium and broadband backside mirror for the QD-micromesa. The nanofabrication of the QD-micromesa is based on in-situ electron-beam lithography, which makes it possible to integrate pre-selected single QDs deterministically into the center of monolithic micromesa structures. The QD pre-selection is based on distinct single-QD properties, signal intensity and emission energy. In combination with strain-induced fine tuning this offers a robust method to achieve spectral resonance in the emission of remote QDs. We show that the spectral tuning has no detectable influence on the multi-photon suppression with $g^{(2)}(0)$ as low as 2-4% and that the emission can be stabilized to an accuracy of 4 $mu$eV using a closed-loop optical feedback.
Scalability and foundry compatibility (as for example in conventional silicon based integrated computer processors) in developing quantum technologies are exceptional challenges facing current research. Here we introduce a quantum photonic technology potentially enabling large scale fabrication of semiconductor-based, site-controlled, scalable arrays of electrically driven sources of polarization-entangled photons, with the potential to encode quantum information. The design of the sources is based on quantum dots grown in micron-sized pyramidal recesses along the crystallographic direction (111)B theoretically ensuring high symmetry of the quantum dots - the condition for actual bright entangled photon emission. A selective electric injection scheme in these non-planar structures allows obtaining a high density of light-emitting diodes, with some producing entangled photon pairs also violating Bells inequality. Compatibility with semiconductor fabrication technology, good reproducibility and control of the position make these devices attractive candidates for integrated photonic circuits for quantum information processing.
This paper reviews recent progress in the synthesis of near-infrared (NIR) lead chalcogenide (PbX; PbX=PbS, PbSe, PbTe) quantum dots (QDs) and their applications in NIR QDs based light emitting diodes (NIR-QLEDs). It summarizes the strategies of how to synthesize high efficiency PbX QDs and how to realize high performance PbX based NIR-QLEDs.
304 - David Elvira 2011
The optical properties of single InAsP/InP quantum dots are investigated by spectrally-resolved and time-resolved photoluminescence measurements as a function of excitation power. In the short-wavelength region (below 1.45 $mu$m), the spectra display sharp distinct peaks resulting from the discrete electron-hole states in the dots, while in the long-wavelength range (above 1.45 $mu$m), these sharp peaks lie on a broad spectral background. In both regions, cascade emission observed by time-resolved photoluminescence confirms that the quantum dots possess discrete exciton and multi-exciton states. Single photon emission is reported for the dots emitting at 1.3 $mu$m through anti-bunching measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا