Do you want to publish a course? Click here

TempoRL: Learning When to Act

121   0   0.0 ( 0 )
 Added by Andr\\'e Biedenkapp
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reinforcement learning is a powerful approach to learn behaviour through interactions with an environment. However, behaviours are usually learned in a purely reactive fashion, where an appropriate action is selected based on an observation. In this form, it is challenging to learn when it is necessary to execute new decisions. This makes learning inefficient, especially in environments that need various degrees of fine and coarse control. To address this, we propose a proactive setting in which the agent not only selects an action in a state but also for how long to commit to that action. Our TempoRL approach introduces skip connections between states and learns a skip-policy for repeating the same action along these skips. We demonstrate the effectiveness of TempoRL on a variety of traditional and deep RL environments, showing that our approach is capable of learning successful policies up to an order of magnitude faster than vanilla Q-learning.

rate research

Read More

We present an approach to sensorimotor control in immersive environments. Our approach utilizes a high-dimensional sensory stream and a lower-dimensional measurement stream. The cotemporal structure of these streams provides a rich supervisory signal, which enables training a sensorimotor control model by interacting with the environment. The model is trained using supervised learning techniques, but without extraneous supervision. It learns to act based on raw sensory input from a complex three-dimensional environment. The presented formulation enables learning without a fixed goal at training time, and pursuing dynamically changing goals at test time. We conduct extensive experiments in three-dimensional simulations based on the classical first-person game Doom. The results demonstrate that the presented approach outperforms sophisticated prior formulations, particularly on challenging tasks. The results also show that trained models successfully generalize across environments and goals. A model trained using the presented approach won the Full Deathmatch track of the Visual Doom AI Competition, which was held in previously unseen environments.
We examine the question of when and how parametric models are most useful in reinforcement learning. In particular, we look at commonalities and differences between parametric models and experience replay. Replay-based learning algorithms share important traits with model-based approaches, including the ability to plan: to use more computation without additional data to improve predictions and behaviour. We discuss when to expect benefits from either approach, and interpret prior work in this context. We hypothesise that, under suitable conditions, replay-based algorithms should be competitive to or better than model-based algorithms if the model is used only to generate fictional transitions from observed states for an update rule that is otherwise model-free. We validated this hypothesis on Atari 2600 video games. The replay-based algorithm attained state-of-the-art data efficiency, improving over prior results with parametric models.
Visual attributes, which refer to human-labeled semantic annotations, have gained increasing popularity in a wide range of real world applications. Generally, the existing attribute learning methods fall into two categories: one focuses on learning user-specific labels separately for different attributes, while the other one focuses on learning crowd-sourced global labels jointly for multiple attributes. However, both categories ignore the joint effect of the two mentioned factors: the personal diversity with respect to the global consensus; and the intrinsic correlation among multiple attributes. To overcome this challenge, we propose a novel model to learn user-specific predictors across multiple attributes. In our proposed model, the diversity of personalized opinions and the intrinsic relationship among multiple attributes are unified in a common-to-special manner. To this end, we adopt a three-component decomposition. Specifically, our model integrates a common cognition factor, an attribute-specific bias factor and a user-specific bias factor. Meanwhile Lasso and group Lasso penalties are adopted to leverage efficient feature selection. Furthermore, theoretical analysis is conducted to show that our proposed method could reach reasonable performance. Eventually, the empirical study carried out in this paper demonstrates the effectiveness of our proposed method.
Agents trained by reinforcement learning (RL) often fail to generalize beyond the environment they were trained in, even when presented with new scenarios that seem similar to the training environment. We study the query complexity required to train RL agents that generalize to multiple environments. Intuitively, tractable generalization is only possible when the environments are similar or close in some sense. To capture this, we introduce Weak Proximity, a natural structural condition that requires the environments to have highly similar transition and reward functions and share a policy providing optimal value. Despite such shared structure, we prove that tractable generalization is impossible in the worst case. This holds even when each individual environment can be efficiently solved to obtain an optimal linear policy, and when the agent possesses a generative model. Our lower bound applies to the more complex task of representation learning for the purpose of efficient generalization to multiple environments. On the positive side, we introduce Strong Proximity, a strengthened condition which we prove is sufficient for efficient generalization.
Learning when to communicate and doing that effectively is essential in multi-agent tasks. Recent works show that continuous communication allows efficient training with back-propagation in multi-agent scenarios, but have been restricted to fully-cooperative tasks. In this paper, we present Individualized Controlled Continuous Communication Model (IC3Net) which has better training efficiency than simple continuous communication model, and can be applied to semi-cooperative and competitive settings along with the cooperative settings. IC3Net controls continuous communication with a gating mechanism and uses individualized rewards foreach agent to gain better performance and scalability while fixing credit assignment issues. Using variety of tasks including StarCraft BroodWars explore and combat scenarios, we show that our network yields improved performance and convergence rates than the baselines as the scale increases. Our results convey that IC3Net agents learn when to communicate based on the scenario and profitability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا