Do you want to publish a course? Click here

A Radial Velocity Search for Binary RR Lyrae Variables

128   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report 272 radial velocities for 19 RR Lyrae variables. For most of the stars we have radial velocities for the complete pulsation cycle. These data are used to determine robust center--of--mass radial velocities that have been compared to values from the literature in a search for evidence of binary systems. Center--of--mass velocities were determined for each star using Fourier Series and Template fits to the radial velocities. Our center--of--mass velocities have uncertainties from $pm0.16$ km s$^{-1}$ to $pm$2.5 km s$^{-1}$, with a mean uncertainty of $pm$0.92 km s$^{-1}$. We combined our center--of--mass velocities with values from the literature to look for deviations from the mean center--of--mass velocity of each star. Fifteen RR Lyrae show no evidence of binary motion (BK And, CI And, Z CVn, DM Cyg, BK Dra, RR Gem, XX Hya, SZ Leo, BX Leo, TT Lyn, CN Lyr, TU Per, U Tri, RV UMa, and AV Vir). In most cases this conclusion is reached due to the sporadic sampling of the center--of--mass velocities over time. Three RR Lyrae show suspicious variation in the center--of--mass velocities that may indicate binary motion but do not prove it (SS Leo, ST Leo, and AO Peg). TU UMa was observed by us near a predicted periastron passage (at 0.14 in orbital phase) but the absence of additional center--of--mass velocities near periastron make the binary detection, based on radial velocities alone, uncertain. Two stars in our sample show $Hgamma$ emission in phases 0.9--1.0: SS Leo and TU UMa.



rate research

Read More

160 - G. Hajdu , M. Catelan (1 2015
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time effect in so-called observed minus calculated ($O-C$) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 years, leading to a final sample of 12 firm binary candidates. We provide $O-C$ diagrams and binary parameters for this final sample, and also discuss the properties of 8 additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that $gtrsim 4$ per cent of the RRL reside in binary systems.
Radial velocities of 2768 fundamental mode RR Lyrae stars (RRLs) toward the Southern Galactic bulge are presented, spanning the southern bulge from -8 < l < +8 and -3 < b <-6. Distances derived from the pulsation properties of the RRLs are combined with Gaia proper motions to give constraints on the orbital motions of 1389 RRLs. The majority (~75%) of the bulge RRLs have orbits consistent with these stars being permanently bound to <3.5 kpc from the Galactic Center, similar to the bar. However, unlike the bulge giants, the RRLs exhibit slower rotation and a higher velocity dispersion. The higher velocity dispersion arises almost exclusively from halo interlopers passing through the inner Galaxy. We present 82 stars with space velocities > 500 km/s and find that the majority of these high-velocity stars are halo interlopers; it is unclear if a sub-sample of these stars with similar space velocities have a common origin. Once the 25% of the sample represented by halo interlopers is cleaned, we can clearly discern two populations of bulge RRLs in the inner Galaxy. One population of RRLs is not as tightly bound to the Galaxy (but is still confined to the inner ~3.5 kpc), and is both spatially and kinematically consistent with the barred bulge. The second population is more centrally concentrated and does not trace the bar. One possible interpretation is that this population was born prior to bar formation, as its spatial location, kinematics and pulsation properties suggest, possibly from an accretion event at high redshift.
Among the tens of thousands of known RR Lyrae stars there are only a handful that show indications of possible binarity. The question why this is the case is still unsolved, and has recently sparked several studies dedicated to the search for additional RR Lyraes in binary systems. Such systems are particularly valuable because they might allow to constrain the stellar mass. Most of the recent studies, however, are based on photometry by finding a light time effect in the timings of maximum light. This approach is a very promising and successful one, but it has a major drawback: by itself, it cannot serve as a definite proof of binarity, because other phenomena such as the Blazhko effect or intrinsic period changes could lead to similar results. Spectroscopic radial velocity measurements, on the other hand, can serve as definite proof of binarity. We have therefore started a project to study spectroscopically RR Lyrae stars that are suspected to be binaries. We have obtained radial velocity (RV) curves with the 2.1m telescope at McDonald observatory. From these we derive systemic RVs which we will compare to previous measurements in order to find changes induced by orbital motions. We also construct templates of the RV curves that can facilitate future studies. We also observed the most promising RR Lyrae binary candidate, TU UMa, as no recent spectroscopic measurements were available. We present a densely covered pulsational RV curve, which will be used to test the predictions of the orbit models that are based on the O-C variations.
The history of the observations of RR Lyr variables started in the XIXth century, more than 120 years ago. The very long time baseline of available data combined with the short period of RR Lyrae variables offer an unique opportunity to look at their past as a treasure of valuable information. At this purpose, the amateur/professional association Groupe Europeen dObservations Stellaires (GEOS) has built a database aimed to gather all the published maxima. We could study the period changes due to stellar evolution. Most of the 123 scrutinized RRab stars does not show any significant period variation. This reflects the fact that the rapid evolution is confined in short evolutionary phases. Notwithstanding this, we could put in evidence period increases in 27 stars and decreases in 21 ones. We also used the GEOS database to study the Blazhko effect of galactic RRab stars. The closed curves representing the Blazhko effect are constructed by plotting the magnitudes at maximum vs. the O-C values. We obtained a variegate family of Blazhko potatoes. We could also reconstruct the changes in the pulsational and Blazhko periods of RR Lyr itself, resulted to be completely decoupled. Moreover, the amplitude of the Blazhko effect decreased so much to be hardly detectable by looking at the maxima collected in 2014 only. The effect seems to start again in the 2015 data.
Although roughly half of all stars are considered to be part of binary or multiple systems, there are only two confirmed cases of RR Lyrae pulsators with companions. One of them is TU Uma (Wade et al 1999) - a classical RR Lyrae star in a very eccentric orbit - and the other is OGLE-BLG-RRLYR-02792 (Pietrzynski et al 2012). Considering the wealth of well-studied RR Lyrae stars, this number is astoundingly low. Having more RR Lyrae stars in binary systems at hand would be extremely valuable to get independent measurements of the masses. The data from the Kepler mission with their unprecedented precision and the long time span of about four years offer a unique possibility to systematically search for the signatures of binarity in RR Lyrae stars. Using the pulsation as a clock, we studied the variations in the timing of maximum light to hunt for possible binary systems in the sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا