Do you want to publish a course? Click here

Evidence against the wobbling nature of low-spin bands in $^{135}$Pr

101   0   0.0 ( 0 )
 Added by Costel Petrache
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The electromagnetic character of the $Delta I=1$ transitions connecting the one- to zero-phonon and the two- to one-phonon wobbling bands should be dominated by an $E2$ component, due to the collective motion of the entire nuclear charge. In the present work it is shown, based on combined angular correlation and linear polarization measurements, that the mixing ratios of all analyzed connecting transitions between low-lying bands in $^{135}$Pr interpreted as zero-, one-, and two-phonon wobbling bands, have absolute values smaller than one. This indicates predominant $M1$ magnetic character, which is incompatible with the proposed wobbling nature. All experimental observables are instead in good agreement with quasiparticle-plus-triaxial-rotor model calculations, which describe the bands as resulting from a rapid re-alignment of the total angular momentum from the short to the intermediate nuclear axis.



rate research

Read More

150 - J.T. Matta , U. Garg , W. Li 2015
A pair of transverse wobbling bands has been observed in the nucleus $^{135}$Pr. The wobbling is characterized by $Delta I$ =1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the Tilted Axis Cranking (TAC) model and the Quasiparticle Triaxial Rotor (QTR) Model.
99 - S. Guo 2020
In [J. T. Matta et al., Phys. Rev. Lett. 114, 082501 (2015)] a transverse wobbling band was reported in $^{135}$Pr. The critical experimental proof for this assignment is the E2 dominated linking transitions between the wobbling and normal bands, which are supported by two experiments performed with Gammasphere and INGA. However, the M1 dominated character cannot be excluded based on the reported experimental information, indicating that the wobbling assignment is still questionable.
It is argued that the experimental criteria recently used to assign wobbling nature to low-spin bands in several nuclei are insufficient and risky. New experimental data involving angular distribution and linear polarization measurements on an excited band in 187Au, previously interpreted as longitudinal wobbling, are presented. The new data show that the linking transitions have dominant magnetic nature and exclude the wobbling interpretation.
One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$chi$D) bands in the $Aapprox130$ mass region. The properties of the M$chi$D bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed M$chi$D bands in $^{135}$Nd represents an important milestone in supporting the existence of M$chi$D in nuclei.
The $g$-factor and static quadrupole moment of the nuclides $^{135}$Pr, $^{105}$Pd, and $^{187}$Au in the wobbling motion are investigated in the particle-rotor model as functions of the total spin $I$. The $g$-factor of $^{105}mathrm{Pd}$ increases with increasing $I$, due to the negative gyromagnetic ratio of a neutron valence-neutron. This behavior is in contrast to the decreasing $g$-factor of the other two nuclides, $^{135}$Pr and $^{187}$Au, which feature a valence-proton. The static quadrupole moment $Q$ depends on all three expectation values of the total angular momentum. It is smaller in the yrast band than in the wobbling band for the transverse wobblers $^{135}$Pr and $^{105}$Pd, while larger for the longitudinal wobbler $^{187}$Au.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا