No Arabic abstract
Recent work (Takanobu et al., 2020) proposed the system-wise evaluation on dialog systems and found that improvement on individual components (e.g., NLU, policy) in prior work may not necessarily bring benefit to pipeline systems in system-wise evaluation. To improve the system-wise performance, in this paper, we propose new joint system-wise optimization techniques for the pipeline dialog system. First, we propose a new data augmentation approach which automates the labeling process for NLU training. Second, we propose a novel stochastic policy parameterization with Poisson distribution that enables better exploration and offers a principled way to compute policy gradient. Third, we propose a reward bonus to help policy explore successful dialogs. Our approaches outperform the competitive pipeline systems from Takanobu et al. (2020) by big margins of 12% success rate in automatic system-wise evaluation and of 16% success rate in human evaluation on the standard multi-domain benchmark dataset MultiWOZ 2.1, and also outperform the recent state-of-the-art end-to-end trained model from DSTC9.
We propose a novel methodology to address dialog learning in the context of goal-oriented conversational systems. The key idea is to quantize the dialog space into clusters and create a language model across the clusters, thus allowing for an accurate choice of the next utterance in the conversation. The language model relies on n-grams associated with clusters of utterances. This quantized-dialog language model methodology has been applied to the end-to-end goal-oriented track of the latest Dialog System Technology Challenges (DSTC6). The objective is to find the correct system utterance from a pool of candidates in order to complete a dialog between a user and an automated restaurant-reservation system. Our results show that the technique proposed in this paper achieves high accuracy regarding selection of the correct candidate utterance, and outperforms other state-of-the-art approaches based on neural networks.
Existing benchmarks used to evaluate the performance of end-to-end neural dialog systems lack a key component: natural variation present in human conversations. Most datasets are constructed through crowdsourcing, where the crowd workers follow a fixed template of instructions while enacting the role of a user/agent. This results in straight-forward, somewhat routine, and mostly trouble-free conversations, as crowd workers do not think to represent the full range of actions that occur naturally with real users. In this work, we investigate the impact of naturalistic variation on two goal-oriented datasets: bAbI dialog task and Stanford Multi-Domain Dataset (SMD). We also propose new and more effective testbeds for both datasets, by introducing naturalistic variation by the user. We observe that there is a significant drop in performance (more than 60% in Ent. F1 on SMD and 85% in per-dialog accuracy on bAbI task) of recent state-of-the-art end-to-end neural methods such as BossNet and GLMP on both datasets.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in task-oriented dialog systems. We also discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model. Besides, we review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey, though incomplete, can shed a light on future research in task-oriented dialog systems.
Goal-oriented dialog systems enable users to complete specific goals like requesting information about a movie or booking a ticket. Typically the dialog system pipeline contains multiple ML models, including natural language understanding, state tracking and action prediction (policy learning). These models are trained through a combination of supervised or reinforcement learning methods and therefore require collection of labeled domain specific datasets. However, collecting annotated datasets with language and dialog-flow variations is expensive, time-consuming and scales poorly due to human involvement. In this paper, we propose an approach for automatically creating a large corpus of annotated dialogs from a few thoroughly annotated sample dialogs and the dialog schema. Our approach includes a novel goal-sampling technique for sampling plausible user goals and a dialog simulation technique that uses heuristic interplay between the user and the system (Alexa), where the user tries to achieve the sampled goal. We validate our approach by generating data and training three different downstream conversational ML models. We achieve 18 ? 50% relative accuracy improvements on a held-out test set compared to a baseline dialog generation approach that only samples natural language and entity value variations from existing catalogs but does not generate any novel dialog flow variations. We also qualitatively establish that the proposed approach is better than the baseline. Moreover, several different conversational experiences have been built using this method, which enables customers to have a wide variety of conversations with Alexa.
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is evaluated by human evaluation and a user simulator based automatic evaluation. Different from traditional pipelined approaches where modules are optimized individually and suffer from cascading failure, we propose an end-to-end dialog system that 1) uses Generative Pretraining 2 (GPT-2) as the backbone to jointly solve Natural Language Understanding, Dialog State Tracking, and Natural Language Generation tasks, 2) adopts Domain and Task Adaptive Pretraining to tailor GPT-2 to the dialog domain before finetuning, 3) utilizes heuristic pre/post-processing rules that greatly simplify the prediction tasks and improve generalizability, and 4) equips a fault tolerance module to correct errors and inappropriate responses. Our proposed method significantly outperforms baselines and ties for first place in the official evaluation. We make our source code publicly available.