Do you want to publish a course? Click here

XtremeDistilTransformers: Task Transfer for Task-agnostic Distillation

89   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While deep and large pre-trained models are the state-of-the-art for various natural language processing tasks, their huge size poses significant challenges for practical uses in resource constrained settings. Recent works in knowledge distillation propose task-agnostic as well as task-specific methods to compress these models, with task-specific ones often yielding higher compression rate. In this work, we develop a new task-agnostic distillation framework XtremeDistilTransformers that leverages the advantage of task-specific methods for learning a small universal model that can be applied to arbitrary tasks and languages. To this end, we study the transferability of several source tasks, augmentation resources and model architecture for distillation. We evaluate our model performance on multiple tasks, including the General Language Understanding Evaluation (GLUE) benchmark, SQuAD question answering dataset and a massive multi-lingual NER dataset with 41 languages. We release three distilled task-agnostic checkpoints with 13MM, 22MM and 33MM parameters obtaining SOTA performance in several tasks.



rate research

Read More

Knowledge distillation (KD) which transfers the knowledge from a large teacher model to a small student model, has been widely used to compress the BERT model recently. Besides the supervision in the output in the original KD, recent works show that layer-level supervision is crucial to the performance of the student BERT model. However, previous works designed the layer mapping strategy heuristically (e.g., uniform or last-layer), which can lead to inferior performance. In this paper, we propose to use the genetic algorithm (GA) to search for the optimal layer mapping automatically. To accelerate the search process, we further propose a proxy setting where a small portion of the training corpus are sampled for distillation, and three representative tasks are chosen for evaluation. After obtaining the optimal layer mapping, we perform the task-agnostic BERT distillation with it on the whole corpus to build a compact student model, which can be directly fine-tuned on downstream tasks. Comprehensive experiments on the evaluation benchmarks demonstrate that 1) layer mapping strategy has a significant effect on task-agnostic BERT distillation and different layer mappings can result in quite different performances; 2) the optimal layer mapping strategy from the proposed search process consistently outperforms the other heuristic ones; 3) with the optimal layer mapping, our student model achieves state-of-the-art performance on the GLUE tasks.
Task-agnostic knowledge distillation, a teacher-student framework, has been proved effective for BERT compression. Although achieving promising results on NLP tasks, it requires enormous computational resources. In this paper, we propose Extract Then Distill (ETD), a generic and flexible strategy to reuse the teachers parameters for efficient and effective task-agnostic distillation, which can be applied to students of any size. Specifically, we introduce two variants of ETD, ETD-Rand and ETD-Impt, which extract the teachers parameters in a random manner and by following an importance metric respectively. In this way, the student has already acquired some knowledge at the beginning of the distillation process, which makes the distillation process converge faster. We demonstrate the effectiveness of ETD on the GLUE benchmark and SQuAD. The experimental results show that: (1) compared with the baseline without an ETD strategy, ETD can save 70% of computation cost. Moreover, it achieves better results than the baseline when using the same computing resource. (2) ETD is generic and has been proven effective for different distillation methods (e.g., TinyBERT and MiniLM) and students of different sizes. The source code will be publicly available upon publication.
86 - Wenhui Wang , Furu Wei , Li Dong 2020
Pre-trained language models (e.g., BERT (Devlin et al., 2018) and its variants) have achieved remarkable success in varieties of NLP tasks. However, these models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this work, we present a simple and effective approach to compress large Transformer (Vaswani et al., 2017) based pre-trained models, termed as deep self-attention distillation. The small model (student) is trained by deeply mimicking the self-attention module, which plays a vital role in Transformer networks, of the large model (teacher). Specifically, we propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student. Furthermore, we introduce the scaled dot-product between values in the self-attention module as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-product of queries and keys) that have been used in existing works. Moreover, we show that introducing a teacher assistant (Mirzadeh et al., 2019) also helps the distillation of large pre-trained Transformer models. Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models. In particular, it retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer parameters and computations of the teacher model. We also obtain competitive results in applying deep self-attention distillation to multilingual pre-trained models.
261 - Jin Xu , Xu Tan , Renqian Luo 2021
While pre-trained language models (e.g., BERT) have achieved impressive results on different natural language processing tasks, they have large numbers of parameters and suffer from big computational and memory costs, which make them difficult for real-world deployment. Therefore, model compression is necessary to reduce the computation and memory cost of pre-trained models. In this work, we aim to compress BERT and address the following two challenging practical issues: (1) The compression algorithm should be able to output multiple compressed models with different sizes and latencies, in order to support devices with different memory and latency limitations; (2) The algorithm should be downstream task agnostic, so that the compressed models are generally applicable for different downstream tasks. We leverage techniques in neural architecture search (NAS) and propose NAS-BERT, an efficient method for BERT compression. NAS-BERT trains a big supernet on a search space containing a variety of architectures and outputs multiple compressed models with adaptive sizes and latency. Furthermore, the training of NAS-BERT is conducted on standard self-supervised pre-training tasks (e.g., masked language model) and does not depend on specific downstream tasks. Thus, the compressed models can be used across various downstream tasks. The technical challenge of NAS-BERT is that training a big supernet on the pre-training task is extremely costly. We employ several techniques including block-wise search, search space pruning, and performance approximation to improve search efficiency and accuracy. Extensive experiments on GLUE and SQuAD benchmark datasets demonstrate that NAS-BERT can find lightweight models with better accuracy than previous approaches, and can be directly applied to different downstream tasks with adaptive model sizes for different requirements of memory or latency.
In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, which allows us to plug-and-play pre-trained seq2seq models, and jointly learn dialogue state tracking and dialogue response generation. Unlike previous approaches, which use a copy mechanism to carryover the old dialogue states to the new one, we introduce Levenshtein belief spans (Lev), that allows efficient dialogue state tracking with a minimal generation length. We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ. Extensive experiments demonstrate that: 1) our systems establish new state-of-the-art results on end-to-end response generation, 2) MinTL-based systems are more robust than baseline methods in the low resource setting, and they achieve competitive results with only 20% training data, and 3) Lev greatly improves the inference efficiency.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا