Do you want to publish a course? Click here

Review Polarity-wise Recommender

133   0   0.0 ( 0 )
 Added by Han Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Utilizing review information to enhance recommendation, the de facto review-involved recommender systems, have received increasing interests over the past few years. Thereinto, one advanced branch is to extract salient aspects from textual reviews (i.e., the item attributes that users express) and combine them with the matrix factorization technique. However, existing approaches all ignore the fact that semantically different reviews often include opposite aspect information. In particular, positive reviews usually express aspects that users prefer, while negative ones describe aspects that users reject. As a result, it may mislead the recommender systems into making incorrect decisions pertaining to user preference modeling. Towards this end, in this paper, we propose a Review Polarity-wise Recommender model, dubbed as RPR, to discriminately treat reviews with different polarities. To be specific, in this model, positive and negative reviews are separately gathered and utilized to model the user-preferred and user-rejected aspects, respectively. Besides, in order to overcome the imbalance problem of semantically different reviews, we also develop an aspect-aware importance weighting approach to align the aspect importance for these two kinds of reviews. Extensive experiments conducted on eight benchmark datasets have demonstrated the superiority of our model as compared to a series of state-of-the-art review-involved baselines. Moreover, our method can provide certain explanations to the real-world rating prediction scenarios.



rate research

Read More

373 - Shoujin Wang , Liang Hu , Yan Wang 2021
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.
149 - Jia Su , Yi Guan , Yuge Li 2020
Recommender systems have fulfilled an important role in everyday life. Recommendations such as news by Google, videos by Netflix, goods by e-commerce providers, etc. have heavily changed everyones lifestyle. Health domains contain similar decision-making problems such as what to eat, how to exercise, and what is the proper medicine for a patient. Recently, studies focused on recommender systems to solve health problems have attracted attention. In this paper, we review aspects of health recommender systems including interests, methods, evaluation, future challenges and trend issues. We find that 1) health recommender systems have their own health concern limitations that cause them to focus on less-risky recommendations such as diet recommendation; 2) traditional recommender methods such as content-based and collaborative filtering methods can hardly handle health constraints, but knowledge-based methods function more than ever; 3) evaluating a health recommendation is more complicated than evaluating a commercial one because multiple dimensions in addition to accuracy should be considered. Recommender systems can function well in the health domain after the solution of several key problems. Our work is a systematic review of health recommender system studies, we show current conditions and future directions. It is believed that this review will help domain researchers and promote health recommender systems to the next step.
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.
Realistic recommender systems are often required to adapt to ever-changing data and tasks or to explore different models systematically. To address the need, we present AutoRec, an open-source automated machine learning (AutoML) platform extended from the TensorFlow ecosystem and, to our knowledge, the first framework to leverage AutoML for model search and hyperparameter tuning in deep recommendation models. AutoRec also supports a highly flexible pipeline that accommodates both sparse and dense inputs, rating prediction and click-through rate (CTR) prediction tasks, and an array of recommendation models. Lastly, AutoRec provides a simple, user-friendly API. Experiments conducted on the benchmark datasets reveal AutoRec is reliable and can identify models which resemble the best model without prior knowledge.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا