Do you want to publish a course? Click here

Dynamic Opening of a Gap in Dirac Surface States of the Thin-Film 3D Topological Insulator Bi2Se3 Driven by the Dynamic Rashba Effect

112   0   0.0 ( 0 )
 Added by Yuri Glinka
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical control of Dirac surface states (SS) in topological insulators (TI) remains one of the most challenging problems governing their potential applications in novel electronic and spintronic devices. Here, using visible-range transient absorption spectroscopy exploiting ~340 nm (~3.65 eV) pumping, we provide evidence for dynamic opening of a gap in Dirac SS of the thin-film 3D TI Bi2Se3, which has been induced by the dynamic Rashba effect occurring in the film bulk with increasing optical pumping power (photoexcited carrier density). The observed effect appears through the transient absorption band associated with inverse-bremsstrahlung-type free carrier absorption in the gapped Dirac SS. We have also recognized experimental signatures of the existence of the higher energy Dirac SS in the 3D TI Bi2Se3 (in addition to those known as SS1 and SS2) with energies of ~2.7 and ~3.9 eV (SS3 and SS4). It is evidenced that the dynamic gap opening has the same effect on the Dirac SS occurring at any energy.



rate research

Read More

Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials like Graphene and Topological Insulators (TIs). Dirac electrons are characterized by notable properties like a high mobility, a tunable density and, in TIs, a protection against backscattering through the spin-momentum looking mechanism. All those properties make Graphene and TIs appealling for plasmonics applications. However, Dirac electrons are expected to present also a strong nonlinear optical behavior. This should mirror in phenomena like electromagnetic induced transparency (EIT) and harmonic generation. Here, we demonstrate that in Bi2Se3 Topological Insulator, an EIT is achieved under the application of a strong terahertz (THz) electric field. This effect, concomitant determined by harmonic generation and charge-mobility reduction, is exclusively related to the presence of Dirac electron at the surface of Bi2Se_3, and opens the road towards tunable THz nonlinear optical devices based on Topological Insulator materials.
Topological insulators are bulk insulators with exotic surface states, protected under time-reversal symmetry, that hold promise in observing many exciting condensed-matter phenomena. In this report, we show that by having a topological insulator (Bi$_2$Se$_3$) in proximity to a magnetic insulator (EuS), a metal-to-insulator transition in the surface state, attributed to opening of an exchange gap, can be observed whose properties are tunable using bottom gate voltage and external magnetic field. Our study provides evidence of gate-controlled enhanced interface magnetism with the signature of half-integer quantum Hall effect when the Fermi level is tuned into the exchange gap. These results pave the way for using magnetic proximity effect in developing topological electronic devices.
The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confinement, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
161 - Qing Lin He , Gen Yin , Luyan Yu 2016
Ferromagnetism in topological insulators (TIs) opens a topologically non-trivial exchange band gap, providing an exciting platform to manipulate the topological order through an external magnetic field. Here, we experimentally show that the surface of an antiferromagnetic thin film can independently control the topological order of the top and the bottom surface states of a TI thin film through proximity couplings. During the magnetization reversal in a field scan, two intermediate spin configurations stem from unsynchronized magnetic switchings of the top and the bottom AFM/TI interfaces. These magnetic configurations are shown to result in new topological phases with non-zero Chern numbers for each surface, introducing two counter-propagating chiral edge modes inside the exchange gap. This change in the number of transport channels, as the result of the topological transitions, induces antisymmetric magneto-resistance spikes during the magnetization reversal. With the high Neel ordering temperature provided by the antiferromagnetic layers, the signature of the induced topological transition persists in transport measurements up to a temperature of around 90 K, a factor of three over the Curie temperature in a typical magnetically doped TI thin film.
Layered narrow band gap semiconductor Bi2Se3 is composed of heavy elements with strong spin-orbital coupling (SOC), which has been identified both as a good candidate of thermoelectric material of high thermoelectric figure-of-merit (ZT) and a topological insulator of Z2-type with a gapless surface band in Dirac cone shape. The existence of a conjugated pi-bond system on the surface of each Bi2Se3 quintuple layer is proposed based on an extended valence bond model having valence electrons distributed in the hybridized orbitals. Supporting experimental evidences of a 2D conjugated pi-bond system on each quintuple layer of Bi2Se3 are provided by electron energy-loss spectroscopy (EELS) and electron density (ED) mapping through inverse Fourier transform of X-ray diffraction data. Quantum chemistry calculations support the pi-bond existence between partially filled 4pz orbitals of Se via side-to-side orbital overlap positively. The conjugated pi-bond system on the surface of each quintuple Bi2Se3 layer is proposed being similar to that found in graphite (graphene) and responsible for the unique 2D conduction mechanism. The van der Waals (vdW) attractive force between quintuple layers is interpreted being coming from the anti-ferroelectrically ordered effective electric dipoles which are constructed with pi-bond trimer pairs on Se-layers across the vdW gap of minimized Coulomb repulsion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا