Do you want to publish a course? Click here

X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented Compositional Semantic Parsing

97   0   0.0 ( 0 )
 Added by Zihan Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Task-oriented compositional semantic parsing (TCSP) handles complex nested user queries and serves as an essential component of virtual assistants. Current TCSP models rely on numerous training data to achieve decent performance but fail to generalize to low-resource target languages or domains. In this paper, we present X2Parser, a transferable Cross-lingual and Cross-domain Parser for TCSP. Unlike previous models that learn to generate the hierarchical representations for nested intents and slots, we propose to predict flattened intents and slots representations separately and cast both prediction tasks into sequence labeling problems. After that, we further propose a fertility-based slot predictor that first learns to dynamically detect the number of labels for each token, and then predicts the slot types. Experimental results illustrate that our model can significantly outperform existing strong baselines in cross-lingual and cross-domain settings, and our model can also achieve a good generalization ability on target languages of target domains. Furthermore, our model tackles the problem in an efficient non-autoregressive way that reduces the latency by up to 66% compared to the generative model.



rate research

Read More

We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.
Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembling, and pairwise re-ranking based on a language model. We taxonomize the errors possible for the hierarchical representation, such as wrong top intent, missing spans or split spans, and show that the three approaches correct different kinds of errors. The best model combines the three techniques and gives 6.4% better exact match accuracy than the state-of-the-art, with an error reduction of 33%, resulting in a new state-of-the-art result on the Task Oriented Parsing (TOP) dataset.
223 - Yanyan Zou , Wei Lu 2018
With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual semantic parser for a specific language by leveraging data annotated in different languages remains a research question that is under-explored. In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving the performance of a monolingual semantic parser. We extend two existing monolingual semantic parsers to incorporate such cross-lingual distributed logical representations as features. Experiments show that our proposed approach is able to yield improved semantic parsing results on the standard multilingual GeoQuery dataset.
One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Since data collection for machine learning models for this task is time-consuming, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. However, development of such models has largely been hindered by the lack of multilingual training data. In this paper, we present a new data set of 57k annotated utterances in English (43k), Spanish (8.6k) and Thai (5k) across the domains weather, alarm, and reminder. We use this data set to evaluate three different cross-lingual transfer methods: (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, multilingual contextual word representations give better results than using cross-lingual static embeddings. We also compare the cross-lingual methods to using monolingual resources in the form of contextual ELMo representations and find that given just small amounts of target language data, this method outperforms all cross-lingual methods, which highlights the need for more sophisticated cross-lingual methods.
We present BRIDGE, a powerful sequential architecture for modeling dependencies between natural language questions and relational databases in cross-DB semantic parsing. BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question. The hybrid sequence is encoded by BERT with minimal subsequent layers and the text-DB contextualization is realized via the fine-tuned deep attention in BERT. Combined with a pointer-generator decoder with schema-consistency driven search space pruning, BRIDGE attained state-of-the-art performance on popular cross-DB text-to-SQL benchmarks, Spider (71.1% dev, 67.5% test with ensemble model) and WikiSQL (92.6% dev, 91.9% test). Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks. Our implementation is available at url{https://github.com/salesforce/TabularSemanticParsing}.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا