No Arabic abstract
Image composition plays a common but important role in photo editing. To acquire photo-realistic composite images, one must adjust the appearance and visual style of the foreground to be compatible with the background. Existing deep learning methods for harmonizing composite images directly learn an image mapping network from the composite to the real one, without explicit exploration on visual style consistency between the background and the foreground images. To ensure the visual style consistency between the foreground and the background, in this paper, we treat image harmonization as a style transfer problem. In particular, we propose a simple yet effective Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground. With our settings, our RAIN module can be used as a drop-in module for existing image harmonization networks and is able to bring significant improvements. Extensive experiments on the existing image harmonization benchmark datasets show the superior capability of the proposed method. Code is available at {https://github.com/junleen/RainNet}.
Scale variation remains a challenging problem for object detection. Common paradigms usually adopt multiscale training & testing (image pyramid) or FPN (feature pyramid network) to process objects in a wide scale range. However, multi-scale methods aggravate more variations of scale that even deep convolution neural networks with FPN cannot handle well. In this work, we propose an innovative paradigm called Instance Scale Normalization (ISN) to resolve the above problem. ISN compresses the scale space of objects into a consistent range (ISN range), in both training and testing phases. This reassures the problem of scale variation fundamentally and reduces the difficulty of network optimization. Experiments show that ISN surpasses multi-scale counterpart significantly for object detection, instance segmentation, and multi-task human pose estimation, on several architectures. On COCO test-dev, our single model based on ISN achieves 46.5 mAP with a ResNet-101 backbone, which is among the state-of-the-art (SOTA) candidates for object detection.
We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.
Human pose transfer has received great attention due to its wide applications, yet is still a challenging task that is not well solved. Recent works have achieved great success to transfer the person image from the source to the target pose. However, most of them cannot well capture the semantic appearance, resulting in inconsistent and less realistic textures on the reconstructed results. To address this issue, we propose a new two-stage framework to handle the pose and appearance translation. In the first stage, we predict the target semantic parsing maps to eliminate the difficulties of pose transfer and further benefit the latter translation of per-region appearance style. In the second one, with the predicted target semantic maps, we suggest a new person image generation method by incorporating the region-adaptive normalization, in which it takes the per-region styles to guide the target appearance generation. Extensive experiments show that our proposed SPGNet can generate more semantic, consistent, and photo-realistic results and perform favorably against the state of the art methods in terms of quantitative and qualitative evaluation. The source code and model are available at https://github.com/cszy98/SPGNet.git.
Feature Normalization (FN) is an important technique to help neural network training, which typically normalizes features across spatial dimensions. Most previous image inpainting methods apply FN in their networks without considering the impact of the corrupted regions of the input image on normalization, e.g. mean and variance shifts. In this work, we show that the mean and variance shifts caused by full-spatial FN limit the image inpainting network training and we propose a spatial region-wise normalization named Region Normalization (RN) to overcome the limitation. RN divides spatial pixels into different regions according to the input mask, and computes the mean and variance in each region for normalization. We develop two kinds of RN for our image inpainting network: (1) Basic RN (RN-B), which normalizes pixels from the corrupted and uncorrupted regions separately based on the original inpainting mask to solve the mean and variance shift problem; (2) Learnable RN (RN-L), which automatically detects potentially corrupted and uncorrupted regions for separate normalization, and performs global affine transformation to enhance their fusion. We apply RN-B in the early layers and RN-L in the latter layers of the network respectively. Experiments show that our method outperforms current state-of-the-art methods quantitatively and qualitatively. We further generalize RN to other inpainting networks and achieve consistent performance improvements.
This paper addresses the problem of model compression via knowledge distillation. To this end, we propose a new knowledge distillation method based on transferring feature statistics, specifically the channel-wise mean and variance, from the teacher to the student. Our method goes beyond the standard way of enforcing the mean and variance of the student to be similar to those of the teacher through an $L_2$ loss, which we found it to be of limited effectiveness. Specifically, we propose a new loss based on adaptive instance normalization to effectively transfer the feature statistics. The main idea is to transfer the learned statistics back to the teacher via adaptive instance normalization (conditioned on the student) and let the teacher network evaluate via a loss whether the statistics learned by the student are reliably transferred. We show that our distillation method outperforms other state-of-the-art distillation methods over a large set of experimental settings including different (a) network architectures, (b) teacher-student capacities, (c) datasets, and (d) domains.