No Arabic abstract
This paper investigates the achievable rate maximization problem of a downlink unmanned aerial vehicle (UAV)-enabled communication system aided by an intelligent omni-surface (IOS). Different from the state-of-the-art reconfigurable intelligent surface (RIS) that only reflects incident signals, the IOS can simultaneously reflect and transmit the signals, thereby providing full-dimensional rate enhancement. To tackle such a problem, we formulate it by jointly optimizing the IOSs phase shift and the UAV trajectory. Although it is difficult to solve it optimally due to its non-convexity, we propose an efficient iterative algorithm to obtain a high-quality suboptimal solution. Simulation results show that the IOS-assisted UAV communications can achieve more significant improvement in achievable rates than other benchmark schemes.
The recent development of metasurfaces has motivated their potential use for improving the performance of wireless communication networks by manipulating the propagation environment through nearly-passive sub-wavelength scattering elements arranged on a surface. However, most studies of this technology focus on reflective metasurfaces, i.e., the surface reflects the incident signals towards receivers located on the same side of the transmitter, which restricts the coverage to one side of the surface. In this article, we introduce the concept of intelligent omni-surface (IOS), which is able to serve mobile users on both sides of the surface to achieve full-dimensional communications by jointly engineering its reflective and refractive properties. The working principle of the IOS is introduced and a novel hybrid beamforming scheme is proposed for IOS-based wireless communications. Moreover, we present a prototype of IOS-based wireless communications and report experimental results. Furthermore, potential applications of the IOS to wireless communications together with relevant research challenges are discussed.
Intelligent reflecting surface (IRS) is a promising technology for enhancing wireless communication systems. It adaptively configures massive passive reflecting elements to control wireless channel in a desirable way. Due to hardware characteristics and deploying environments, an IRS may be subject to reflecting element blockages and failures, and hence developing diagnostic techniques is of great significance to system monitoring and maintenance. In this paper, we develop diagnostic techniques for IRS systems to locate faulty reflecting elements and retrieve failure parameters. Three cases of channel state information (CSI) availability are considered. In the first case where full CSI is available, a compressed sensing based diagnostic technique is proposed, which significantly reduces the required number of measurements. In the second case where only partial CSI is available, we jointly exploit the sparsity of the millimeter-wave channel and the failure, and adopt compressed sparse and low-rank matrix recovery algorithm to decouple channel and failure. In the third case where no CSI is available, a novel atomic norm is introduced as the sparsity-inducing norm of the cascaded channel, and the diagnosis problem is formulated as a joint sparse recovery problem. Finally, the proposed diagnostic techniques are validated through numerical simulations.
In this letter, we study the secure communication problem in the unmanned aerial vehicle (UAV) enabled networks aided by an intelligent reflecting surface (IRS) from the physical-layer security perspective. Specifically, the IRS is deployed to assist the wireless transmission from the UAV to the ground user in the presence of an eavesdropper. The objective of this work is to maximize the secrecy rate by jointly optimizing the phase shifts at the IRS as well as the transmit power and location of the UAV. However, the formulated problem is difficult to solve directly due to the non-linear and non-convex objective function and constraints. By invoking fractional programming and successive convex approximation techniques, the original problem is decomposed into three subproblems, which are then transformed into convex ones. Next, a low-complexity alternating algorithm is proposed to solve the challenging non-convex problem effectively, where the closed-form expressions for transmit power and phase shifts are obtained at each iteration. Simulations results demonstrate that the designed algorithm for IRS-aided UAV communications can achieve higher secrecy rate than benchmarks.
Terahertz (THz) communications have been envisioned as a promising enabler to provide ultra-high data transmission for sixth generation (6G) wireless networks. To tackle the blockage vulnerability brought by severe path attenuation and poor diffraction of THz waves, an intelligent reflecting surface (IRS) is put forward to smartly control the incident THz waves by adjusting the phase shifts. In this paper, we firstly design an efficient hardware structure of graphene-based IRS with phase response up to 306.82 degrees. Subsequently, to characterize the capacity of the IRS-enabled THz multiple-input multiple-output (MIMO) system, an adaptive gradient descent (A-GD) algorithm is developed by dynamically updating the step size during the iterative process, which is determined by the second-order Taylor expansion formulation. In contrast with conventional gradient descent (C-GD) algorithm with fixed step size, the A-GD algorithm evidently improves the achievable rate performance. However, both A-GD algorithm and C-GD algorithm inherit the unacceptable complexity. Then a low complexity alternating optimization (AO) algorithm is proposed by alternately optimizing the precoding matrix by a column-by-column (CBC) algorithm and the phase shift matrix of the IRS by a linear search algorithm. Ultimately, the numerical results demonstrate the effectiveness of the designed hardware structure and the considered algorithms.
This paper presents a novel unmanned aerial vehicle (UAV) aided mobile edge computing (MEC) architecture for vehicular networks. It is considered that the vehicles should complete latency critical computation intensive tasks either locally with on-board computation units or by offloading part of their tasks to road side units (RSUs) with collocated MEC servers. In this direction, a hovering UAV can serve as an aerial RSU (ARSU) for task processing or act as an aerial relay and further offload the computation tasks to a ground RSU (GRSU). In order to significantly reduce the delay during data offloading and downloading, this architecture relies on the benefits of massive multiple input multiple output (MIMO). Therefore, it is considered that the vehicles, the ARSU, and the GRSU employ large scale antennas. A three dimensional (3D) geometrical representation of the MEC enabled network is introduced and an optimization method is proposed that minimizes the weighted total energy consumption (WTEC) of the vehicles and ARSU subject to transmit power allocation, task allocation, and timeslot scheduling. The numerical results verify the theoretical derivations, emphasize on the effectiveness of the massive MIMO transmission, and provide useful engineering insights.