Do you want to publish a course? Click here

Diagnosis of Intelligent Reflecting Surface in Millimeter-wave Communication Systems

117   0   0.0 ( 0 )
 Added by Rui Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Intelligent reflecting surface (IRS) is a promising technology for enhancing wireless communication systems. It adaptively configures massive passive reflecting elements to control wireless channel in a desirable way. Due to hardware characteristics and deploying environments, an IRS may be subject to reflecting element blockages and failures, and hence developing diagnostic techniques is of great significance to system monitoring and maintenance. In this paper, we develop diagnostic techniques for IRS systems to locate faulty reflecting elements and retrieve failure parameters. Three cases of channel state information (CSI) availability are considered. In the first case where full CSI is available, a compressed sensing based diagnostic technique is proposed, which significantly reduces the required number of measurements. In the second case where only partial CSI is available, we jointly exploit the sparsity of the millimeter-wave channel and the failure, and adopt compressed sparse and low-rank matrix recovery algorithm to decouple channel and failure. In the third case where no CSI is available, a novel atomic norm is introduced as the sparsity-inducing norm of the cascaded channel, and the diagnosis problem is formulated as a joint sparse recovery problem. Finally, the proposed diagnostic techniques are validated through numerical simulations.



rate research

Read More

This paper considers a secure multigroup multicast multiple-input single-output (MISO) communication system aided by an intelligent reflecting surface (IRS). Specifically, we aim to minimize the transmit power at the Alice via jointly optimizing the transmit beamformer, AN vector and phase shifts at the IRS subject to the secrecy rate constraints as well as the unit modulus constraints of IRS phase shifts. However, the optimization problem is non-convex and directly solving it is intractable. To tackle the optimization problem, we first transform it into a semidefinite relaxation (SDR) problem, and then alternately update the transmit beamformer and AN matrix as well as the phase shifts at the IRS. In order to reduce the high computational complexity, we further propose a low-complexity algorithm based on second-order cone programming (SOCP). We decouple the optimization problem into two sub-problems and optimize the transmit beamformer, AN vector and the phase shifts alternately by solving two corresponding SOCP sub-problem. Simulation results show that the proposed SDR and SOCP schemes require half or less transmit power than the scheme without IRS, which demonstrates the advantages of introducing IRS and the effectiveness of the proposed methods.
It is difficult for free space optical communication to be applied in mobile communication due to the obstruction of obstacles in the environment, which is expected to be solved by reconfigurable intelligent surface technology. The reconfigurable intelligent surface is a new type of digital coding meta-materials, which can reflect, compute and program electromagnetic and optical waves in real time. We purpose a controllable multi-branch wireless optical communication system based on the optical reconfigurable intelligent surface technology. By setting up multiple optical reconfigurable intelligent surface in the environment, multiple artificial channels are built to improve system performance and to reduce the outage probability. Three factors affecting channel coefficients are investigated in this paper, which are beam jitter, jitter of the reconfigurable intelligent surface and the probability of obstruction. Based on the model, we derive the closed-form probability density function of channel coefficients, the asymptotic systems average bit error rate and outage probability for systems with single and multiple branches. It is revealed that the probability density function contains an impulse function, which causes irreducible error rate and outage probability floors. Numerical results indicate that compared with free-space optical communication systems with single direct path, the performance of the multi-branch system is improved and the outage probability is reduced.
96 - Rui Sun , Weidong Wang , Li Chen 2021
Millimeter-wave (mmWave) communication systems rely on large-scale antenna arrays to combat large path-loss at mmWave band. Due to hardware characteristics and deployment environments, mmWave large-scale antenna systems are vulnerable to antenna element blockages and failures, which necessitate diagnostic techniques to locate faulty antenna elements for calibration purposes. Current diagnostic techniques require full or partial knowledge of channel state information (CSI), which can be challenging to acquire in the presence of antenna failures. In this letter, we propose a blind diagnostic technique to identify faulty antenna elements in mmWave large-scale antenna systems, which does not require any CSI knowledge. By jointly exploiting the sparsity of mmWave channel and failure pattern, we first formulate the diagnosis problem as a joint sparse recovery problem. Then, the atomic norm is introduced to induce the sparsity of mmWave channel over continuous Fourier dictionary. An efficient algorithm based on alternating direction method of multipliers (ADMM) is proposed to solve the formulated problem. Finally, the performance of the proposed technique is evaluated through numerical simulations.
In this paper, we consider channel estimation for intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) systems, where an IRS is deployed to assist the data transmission from the base station (BS) to a user. It is shown that for the purpose of joint active and passive beamforming, the knowledge of a large-size cascade channel matrix needs to be acquired. To reduce the training overhead, the inherent sparsity in mmWave channels is exploited. By utilizing properties of Katri-Rao and Kronecker products, we find a sparse representation of the cascade channel and convert cascade channel estimation into a sparse signal recovery problem. Simulation results show that our proposed method can provide an accurate channel estimate and achieve a substantial training overhead reduction.
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we advocate a novel protocol for the uplink communication in the IRS-assisted massive MIMO systems. Under this protocol, the IRS reflection coefficients are optimized based on the channel covariance matrices, which are generally fixed for many coherence blocks, to boost the long-term performance. Then, given the IRS reflecting coefficients, the BS beamforming vectors are designed in each coherence block based on the effective channel of each user, which is the superposition of its direct and reflected user-IRS-BS channels, to improve the instantaneous performance. Since merely the user effective channels are estimated in each coherence block, the training overhead of this protocol is the same as that in the legacy wireless systems without IRSs. Moreover, in the asymptotic regime that the numbers of IRS elements and BS antennas both go to infinity with a fixed ratio, we manage to first characterize the minimum mean-squared error (MMSE) estimators of the user effective channels and then quantify the closed-form user achievable rates as functions of channel covariance matrices with channel training overhead and estimation error taken into account. Interestingly, it is shown that the properties of channel hardening and favorable propagation still hold for the user effective channels, and satisfactory user rates are thus achievable even if simple BS beamforming solutions, e.g., maximal-ratio combining, are employed. Finally, thanks to the rate characterization, we design a low-complexity algorithm to optimize the IRS reflection coefficients based on channel covariance matrices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا