Do you want to publish a course? Click here

Superconducting properties of the In substituted Topological Crystalline Insulator, SnTe

152   0   0.0 ( 0 )
 Added by Martin Lees
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report detailed investigations of the properties of a superconductor obtained by substituting In at the Sn site in the topological crystalline insulator (TCI), SnTe. Transport, magnetization and heat capacity measurements have been performed on crystals of Sn0.6In0.4Te, which is shown to be a bulk superconductor with Tc(onset) at ~4.70(5) K and Tc(zero) at ~3.50(5) K. The upper and lower critical fields are estimated to be {mu}0Hc2(0) = 1.42(3) T and {mu}0Hc1(0) = 0.90(3) mT respectively, while {kappa} = 56.4(8) indicates this material is a strongly type II superconductor.



rate research

Read More

We present inelastic neutron scattering results of phonons in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te powders, with $x=0$ and 0.3. The $x=0$ sample is a topological crystalline insulator, and the $x=0.3$ sample is a superconductor with a bulk superconducting transition temperature $T_c$ of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1--2.5 meV, suggestive of local modes. On cooling the superconducting sample through $T_c$, there is an enhancement of these features for energies below twice the superconducting-gap energy. We further note that the superconductivity in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te occurs in samples with normal-state resistivities of order 10 m$Omega$~cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb$_{0.5}$Sn$_{0.5}$)$_{0.7}$In$_{0.3}$Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theory.
Recent development in exact classification of a superconducting gap has elucidated various unconventional gap structures, which have not been predicted by the classification of order parameter based on the point group. One of the important previous results is that all symmetry-protected line nodes are characterized by nontrivial topological numbers. Another intriguing discovery is the gap structures depending on the angular momentum $j_z$ of normal Bloch states on threefold and sixfold rotational-symmetric lines in the Brillouin zone. Stimulated by these findings, we classify irreducible representations of the Bogoliubov-de Gennes Hamiltonian at each $boldsymbol{k}$ point on a high-symmetry $n$-fold ($n = 2$, $3$, $4$, and $6$) axis for centrosymmetric and paramagnetic superconductors, by using the combination of group theory and $K$ theory. This leads to the classification of all crystal symmetry-protected nodes (including $j_z$-dependent nodes) on the axis that crosses a normal-state Fermi surface. As a result, it is shown that the classification by group theory completely corresponds with the topological classification. Based on the obtained results, we discuss superconducting gap structures in SrPtAs, CeCoIn$_5$, UPt$_3$, and UCoGe.
When a topological insulator (TI) is made into a nanowire, the interplay between topology and size quantization gives rise to peculiar one-dimensional (1D) states whose energy dispersion can be manipulated by external fields. With proximity-induced superconductivity, these 1D states offer a tunable platform for Majorana zero modes (MZMs) that can be robust even in the presence of disorder. While the realization of the peculiar 1D states was recently confirmed, realization of robust proximity-induced superconductivity in TI nanowires remains a challenge. Here we report novel realization of superconducting TI nanowires based on (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ (BST) thin films: When two rectangular pads of Pd are deposited on a BST thin film with a separation of 100 - 200 nm, the BST beneath the pads is converted into a superconductor, leaving a nanowire of BST in-between. We found that the interface is epitaxial and has a high electronic transparency, leading to a robust superconductivity induced in the BST nanowire. Due to its suitable geometry for gate-tuning, this new platform is promising for future studies of MZMs.
A new class of materials, Topological Crystalline Insulators (TCIs) have been shown to possess exotic surface state properties that are protected by mirror symmetry. These surface features can be enhanced if the surface-area-to-volume ratio of the material increases, or the signal arising from the bulk of the material can be suppressed. We report the experimental procedures to obtain high quality crystal boules of the TCI, SnTe, from which nanowires and microcrystals can be produced by the vapour-liquid-solid (VLS) technique. Detailed characterisation measurements of the bulk crystals as well as of the nanowires and microcrystals produced are presented. The nanomaterials produced were found to be stoichiometrically similar to the source material used. Electron back-scatter diffraction (EBSD) shows that the majority of the nanocrystals grow in the vicinal {001} direction to the growth normal. The growth conditions to produce the different nanostructures of SnTe have been optimised.
Topological insulators embody a new state of matter characterized entirely by the topological invariants of the bulk electronic structure rather than any form of spontaneously broken symmetry. Unlike the 2D quantum Hall or quantum spin-Hall-like systems, the three dimensional (3D) topological insulators can host magnetism and superconductivity which has generated widespread research activity in condensed-matter and materials-physics communities. Thus there is an explosion of interest in understanding the rich interplay between topological and the broken-symmetry states (such as superconductivity), greatly spurred by proposals that superconductivity introduced into certain band structures will host exotic quasiparticles which are of interest in quantum information science. The observations of superconductivity in doped Bi_2Se_3 (Cu$_x$Bi$_2$Se$_3$) and doped Bi_2Te_3 (Pd$_x$-Bi$_2$Te$_3$ T$_c$ $sim$ 5K) have raised many intriguing questions about the spin-orbit physics of these ternary complexes while any rigorous theory of superconductivity remains elusive. Here we present key measurements of electron dynamics in systematically tunable normal state of Cu$_x$Bi$_2$Se$_3$ (x=0 to 12%) gaining insights into its spin-orbit behavior and the topological nature of the surface where superconductivity takes place at low temperatures. Our data reveal that superconductivity occurs (in sample compositions) with electrons in a bulk relativistic kinematic regime and we identify that an unconventional doping mechanism causes the topological surface character of the undoped compound to be preserved at the Fermi level of the superconducting compound, where Cooper pairing occurs at low temperatures. These experimental observations provide important clues for developing a theory of topological-superconductivity in 3D topological insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا