Do you want to publish a course? Click here

Energy-based time derivative damage accumulation model under uniaxial and multiaxial random loadings

133   0   0.0 ( 0 )
 Added by Yongming Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new fatigue life prediction method using the energy-based approach under uniaxial and multiaxial random loadings is proposed in this paper. One unique characteristic of the proposed method is that it uses time-derivative damage accumulation model compared to the classical cycle-based damage accumulation model. Thus, damage under arbitrary random loading can be directly obtained using time-domain integration without cycle counting (e.g., rain-flow cycle counting method in classical fatigue analysis). First, a brief review of existing models is given focusing on their applicability to uniaxial/multiaxial, constant/random, and high cycle fatigue/low cycle fatigue loading regimes. It is observed that most existing models are only applicable to certain loading conditions and many of them are not applicable/validated under random loadings. Next, a time-derivative damage accumulation model under uniaxial random loading is proposed. The proposed damage function is inspired by a time-domain fatigue crack growth model. The fatigue life is obtained by integrating the damage function following random energy loading histories. Following this, an equivalent energy concept for general multiaxial loading conditions is used to convert the random multiaxial loading to an equivalent random uniaxial loading, where the time-derivative damage model can be used. Finally, the proposed model is validated with extensive experimental data from open literature and in-house testing data under various constant and random spectrum loadings. Conclusions and future work are suggested based on the findings from this study.



rate research

Read More

A new phenomenological technique for using constant amplitude loading data to predict fatigue life from a variable amplitude strain history is presented. A critical feature of this reversal-by-reversal model is that the damage accumulation is inherently non-linear. The damage for a reversal in the variable amplitude loading history is predicted by approximating that the accumulated damage comes from a constant amplitude loading that has the strain range of the particular variable amplitude reversal. A key feature of this approach is that overloads at the beginning of the strain history have a more substantial impact on the total lifetime than overloads applied toward the end of the cycle life. This technique effectively incorporates the strain history in the damage prediction and has the advantage over other methods in that there are no fitting parameters that require substantial experimental data. The model presented here is validated using experimental variable amplitude fatigue data for three different metals.
Accumulation of energy by reactive elements is limited by the amplitude of time-harmonic external sources. In the steady-state regime, all incident power is fully reflected back to the source, and the stored energy does not increase in time, although the external source continuously supplies energy. Here, we show that this claim is not true if the reactive element is time-varying, and time-varying lossless loads of a transmission line or lossless metasurfaces can accumulate electromagnetic energy supplied by a time-harmonic source continuously in time without any theoretical limit. We analytically derive the required time dependence of the load reactance and show that it can be in principle realized as a series connection of mixers and filters. Furthermore, we prove that properly designing time-varying LC circuits one can arbitrarily engineer the time dependence of the current in the circuit fed by a given time-harmonic source. As an example, we theoretically demonstrate a circuit with a linearly increasing current through the inductor. Such LC circuits can accumulate huge energy from both the time-harmonic external source and the pump which works on varying the circuit elements in time. Finally, we discuss how this stored energy can be released in form of a time-compressed pulse.
We present a design for a piezoelectric-driven uniaxial stress cell suitable for use at ambient and cryogenic temperatures, and that incorporates both a displacement and a force sensor. The cell has a diameter of 46 mm and a height of 13 mm. It can apply a zero-load displacement of up to ~45 $mu$m, and a zero-displacement force of up to ~245 N. With combined knowledge of the displacement and force applied to the sample, it can quickly be determined whether the sample and its mounts remain within their elastic limits. In tests on the oxide metal Sr$_2$RuO$_4$, we found that at room temperature serious plastic deformation of the sample onset at a uniaxial stress of ~0.2 GPa, while at 5 K the sample deformation remained elastic up to almost 2 GPa. This result highlights the usefulness of in situ tuning, in which the force can be applied after cooling samples to cryogenic temperatures.
As part of the NASA Starlight collaboration, we look at the implications of radiation effects from impacts with the interstellar medium (ISM) on a directed energy driven relativistic spacecraft. The spacecraft experiences a stream of MeV/nucleon impacts along the forward edge primarily from hydrogen and helium nuclei. The accumulation of implanted slowly diffusing gas atoms in solids drives damage through the meso-scale processes of bubble formation, blistering, and exfoliation. This results in macroscopic changes to material properties and, in the cases of blistering and exfoliation, material erosion via blister rupture and delamination. Relativistic hydrogen and helium at constant velocity will stop in the material at a similar depth, as predicted by Bethe-Bloch stopping and subsequent simulations of the implantation distribution, leading to a mixed hydrogen and helium system similar to that observed in fusion plasma-facing components (PFCs). However, the difference in location of near-surface gas atoms with respect to the direction of exposure means that previously developed empirical models of blistering cannot be used to predict bubble formation or blistering onset. In this work, we present a model of the local gas concentration threshold for material blistering from exposure to the ISM at relativistic speeds. Expected effects on the spacecraft and mitigation strategies are also discussed. The same considerations apply to the Breakthrough Starshot mission.
To enable an exploration of the initiation mechanism of nanosecond laser damage on a potassium dihydrogen phosphate (KDP) surface, a defect-assisted energy deposition model is developed that involves light intensity enhancement and a sub-band gap energy level structure. The simulations provide an explanation on why the laser-induced damage threshold (LIDT) of the KDP crystal is two orders of magnitude lower than the theoretical value. The model is verified by use of the transient images that appear during the laser damage. In addition, the dimensions of the dangerous surface defects that are the most sensitive to the laser damage are proposed. This work enables clarification on the initial energy deposition (IED) and initiation mechanism of the nanosecond laser damage caused by the KDP surface defects on micro-nano scale. It is helpful in understanding the laser-matter interactions and to improve the processing technique for high quality optical components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا