Do you want to publish a course? Click here

Initial energy deposition and initiation mechanism of nanosecond laser damage caused by KDP surface micro-defects

84   0   0.0 ( 0 )
 Added by Hao Yang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

To enable an exploration of the initiation mechanism of nanosecond laser damage on a potassium dihydrogen phosphate (KDP) surface, a defect-assisted energy deposition model is developed that involves light intensity enhancement and a sub-band gap energy level structure. The simulations provide an explanation on why the laser-induced damage threshold (LIDT) of the KDP crystal is two orders of magnitude lower than the theoretical value. The model is verified by use of the transient images that appear during the laser damage. In addition, the dimensions of the dangerous surface defects that are the most sensitive to the laser damage are proposed. This work enables clarification on the initial energy deposition (IED) and initiation mechanism of the nanosecond laser damage caused by the KDP surface defects on micro-nano scale. It is helpful in understanding the laser-matter interactions and to improve the processing technique for high quality optical components.



rate research

Read More

Ammonia (NH3) is commonly used as group V precursor in gallium nitride (GaN) metalorganic chemical vapor deposition (MOCVD). The high background carbon (C) impurity in MOCVD GaN is related to the low pyrolysis efficiency of NH3, which represents one of the fundamental challenges hindering the development of high purity thick GaN for vertical high power device applications. This work uses a laser-assisted MOCVD (LA-MOCVD) growth technique to address the high-C issue in MOCVD GaN. Carbon dioxide (CO2) laser with wavelength of 9.219 um was utilized to facilitate NH3 decomposition via resonant vibrational excitation. The LA-MOCVD GaN growth rate (as high as 10 um/hr) shows a strong linear relationship with the trimethylgallium (TMGa) flow rate, indicating high effective V/III ratios and hence efficient NH3 decomposition. Pits-free surface morphology of LA-MOCVD GaN was demonstrated for films with growth rate as high as 8.5 um/hr. The background [C] in LA-MOCVD GaN films decreases monotonically as the laser power increases. A low [C] at 5.5E15 cm-3 was achieved in LA-MOCVD GaN film grown with the growth rate of 4 um/hr. Charge transport characterization of LA-MOCVD GaN films reveals high crystalline quality with room temperature mobility >1000 cm2/Vs. LA-MOCVD growth technique provides an enabling route to achieve high quality GaN epitaxy with low-C impurity and fast growth rate simultaneously. This technique can also be extended for epitaxy of other nitride-based semiconductors.
65 - P. N. Terekhin 2019
The accurate calculation of laser energy absorption during femto- or picosecond laser pulse experiments is very important for the description of the formation of periodic surface structures. On a rough material surface, a crack or a step edge, ultrashort laser pulses can excite surface plasmon polaritons (SPP), i.e. surface plasmons coupled to a laser-electromagnetic wave. The interference of such plasmon wave and the incoming pulse leads to a periodic modulation of the deposited laser energy on the surface of the sample. In the present work, within the frames of a Two Temperature Model we propose the analytical form of the source term, which takes into account SPP excited at a step edge of a dielectric-metal interface upon irradiation of an ultrashort laser pulse at normal incidence. The influence of the laser pulse parameters on energy absorption is quantified for the example of gold. This result can be used for nanophotonic applications and for the theoretical investigation of the evolution of electronic and lattice temperatures and, therefore, of the formation of surfaces with predestined properties under controlled conditions.
108 - Hao Zhang , Hong Wang , Meiyang Ma 2018
Organometal trihalide perovskite solar cells have been rapidly developed and attracted much attention in recent years due to their high photoelectric conversion efficiency and low cost. Pulsed laser deposition (PLD) is a widely adopted technology which is used in the preparation of thin films, especially oxide thin films. With this technology, the thickness and composition of films can be conveniently and accurately controlled. In the structure of perovskite solar cells, TiO$_2$ layer working as the n-type semiconductor is used to block holes and transport electrons into electrode, which is crucial for the performance of whole devices. We introduced the PLD technique into preparation of TiO$_2$ layer. In comparison with common spin coating method, TiO$_2$ layer prepared by this technique is ultrathin and more compact. Compact TiO$_2$ (c-TiO$_2$) layers with optimized thickness of 32 nm have been prepared by the PLD method and the highest efficiency of 13.95 % for the MAPbI$_3$-based solar cell devices has been achieved.
THz pulses are generated from femtosecond pulse-excited ferromagnetic/nonmagnetic spintronic heterostructures via inverse spin Hall effect. The contribution from ultrafast demagnetization/remagnetization is extremely weak, in the comparison. The highest possible THz signal strength from spintronic THz emitters is limited by the optical damage threshold of the corresponding heterostructures. The THz generation efficiency does not saturate with the excitation fluence even up till the damage threshold. Bilayer (Fe, CoFeB)/(Pt, Ta) based FM/NM spintronic heterostructures have been studied for an optimized performance for THz generation when pumped by sub-50 fs amplified laser pulses at 800 nm. Among them, CoFeB/Pt is the best combination for an efficient THz source. The optimized FM/NM spintronic heterostructure on a quartz substrate, having alpha-phase Ta as the nonmagnetic layer, show the highest damage threshold as compared to those with Pt, irrespective of their generation efficiency. The damage threshold of the Fe/Ta heterostructure on quartz substrate is ~85 GW/cm2.
208 - Yue Ding , Gang Feng Wang 2019
Size dependent hardness has long been reported in nanosized indentations, however the corresponding explanation is still in exploration. In this paper, we examine the influence of surface energy on the hardness of materials under spherical indentation. To evaluate the ability of materials to resist indentation, a yield hardness is defined here as the contact pressure at the inception of material yield. It is found that this defined hardness is an intrinsic material property depending only on the yield strength and Poisson ratio in conventional continuum mechanics. Then, the impact of surface energy on the yield hardness is analyzed through finite element simulations. By using the dimensional analysis, the dependences of the yield hardness and critical indent depth at yield initiation on surface energy have been achieved. When the yield strength is comparable to the ratio of surface energy density to indenter radius, surface energy will alter the yield hardness and the critical indent depth. As the size of indenter decreases to nanoscale, both the yield hardness and the indent depth will increase significantly. This study provides a possible clarification to the size dependence of hardness and a potential approach to measure the yield strength and surface energy of solids through nanosized indentations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا