Do you want to publish a course? Click here

Individual vs. Joint Perception: a Pragmatic Model of Pointing as Communicative Smithian Helping

71   0   0.0 ( 0 )
 Added by Kaiwen Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The simple gesture of pointing can greatly augment ones ability to comprehend states of the world based on observations. It triggers additional inferences relevant to ones task at hand. We model an agents update to its belief of the world based on individual observations using a partially observable Markov decision process (POMDP), a mainstream artificial intelligence (AI) model of how to act rationally according to beliefs formed through observation. On top of that, we model pointing as a communicative act between agents who have a mutual understanding that the pointed observation must be relevant and interpretable. Our model measures relevance by defining a Smithian Value of Information (SVI) as the utility improvement of the POMDP agent before and after receiving the pointing. We model that agents calculate SVI by using the cognitive theory of Smithian helping as a principle of coordinating separate beliefs for action prediction and action evaluation. We then import SVI into rational speech act (RSA) as the utility function of an utterance. These lead us to a pragmatic model of pointing allowing for contextually flexible interpretations. We demonstrate the power of our Smithian pointing model by extending the Wumpus world, a classic AI task where a hunter hunts a monster with only partial observability of the world. We add another agent as a guide who can only help by marking an observation already perceived by the hunter with a pointing or not, without providing new observations or offering any instrumental help. Our results show that this severely limited and overloaded communication nevertheless significantly improves the hunters performance. The advantage of pointing is indeed due to a computation of relevance based on Smithian helping, as it disappears completely when the task is too difficult or too easy for the guide to help.



rate research

Read More

We introduce a unified objective for action and perception of intelligent agents. Extending representation learning and control, we minimize the joint divergence between the combined system of agent and environment and a target distribution. Intuitively, such agents use perception to align their beliefs with the world, and use actions to align the world with their beliefs. Minimizing the joint divergence to an expressive target maximizes the mutual information between the agents representations and inputs, thus inferring representations that are informative of past inputs and exploring future inputs that are informative of the representations. This lets us explain intrinsic objectives, such as representation learning, information gain, empowerment, and skill discovery from minimal assumptions. Moreover, interpreting the target distribution as a latent variable model suggests powerful world models as a path toward highly adaptive agents that seek large niches in their environments, rendering task rewards optional. The framework provides a common language for comparing a wide range of objectives, advances the understanding of latent variables for decision making, and offers a recipe for designing novel objectives. We recommend deriving future agent objectives the joint divergence to facilitate comparison, to point out the agents target distribution, and to identify the intrinsic objective terms needed to reach that distribution.
86 - Eytan Adar , Elsie Lee 2020
Significant research has provided robust task and evaluation languages for the analysis of exploratory visualizations. Unfortunately, these taxonomies fail when applied to communicative visualizations. Instead, designers often resort to evaluating communicative visualizations from the cognitive efficiency perspective: can the recipient accurately decode my message/insight? However, designers are unlikely to be satisfied if the message went in one ear and out the other. The consequence of this inconsistency is that it is difficult to design or select between competing options in a principled way. The problem we address is the fundamental mismatch between how designers want to describe their intent, and the language they have. We argue that visualization designers can address this limitation through a learning lens: that the recipient is a student and the designer a teacher. By using learning objectives, designers can better define, assess, and compare communicative visualizations. We illustrate how the learning-based approach provides a framework for understanding a wide array of communicative goals. To understand how the framework can be applied (and its limitations), we surveyed and interviewed members of the Data Visualization Society using their own visualizations as a probe. Through this study we identified the broad range of objectives in communicative visualizations and the prevalence of certain objective types.
57 - Aref Hakimzadeh , Yanbo Xue , 2021
In Maurice Merleau-Pontys phenomenology of perception, analysis of perception accounts for an element of intentionality, and in effect therefore, perception and action cannot be viewed as distinct procedures. In the same line of thinking, Alva No{e} considers perception as a thoughtful activity that relies on capacities for action and thought. Here, by looking into psychology as a source of inspiration, we propose a computational model for the action involved in visual perception based on the notion of equilibrium as defined by Jean Piaget. In such a model, Piagets equilibrium reflects the minds status, which is used to control the observation process. The proposed model is built around a modified version of convolutional neural networks (CNNs) with enhanced filter performance, where characteristics of filters are adaptively adjusted via a high-level control signal that accounts for the thoughtful activity in perception. While the CNN plays the role of the visual system, the control signal is assumed to be a product of mind.
80 - Ashish Kapoor 2020
Commercial aviation is one of the biggest contributors towards climate change. We propose to reduce environmental impact of aviation by considering solutions that would reduce the flight time. Specifically, we first consider improving winds aloft forecast so that flight planners could use better information to find routes that are efficient. Secondly, we propose an aircraft routing method that seeks to find the fastest route to the destination by considering uncertainty in the wind forecasts and then optimally trading-off between exploration and exploitation.
The growth in online goods delivery is causing a dramatic surge in urban vehicle traffic from last-mile deliveries. On the other hand, ride-sharing has been on the rise with the success of ride-sharing platforms and increased research on using autonomous vehicle technologies for routing and matching. The future of urban mobility for passengers and goods relies on leveraging new methods that minimize operational costs and environmental footprints of transportation systems. This paper considers combining passenger transportation with goods delivery to improve vehicle-based transportation. Even though the problem has been studied with a defined dynamics model of the transportation system environment, this paper considers a model-free approach that has been demonstrated to be adaptable to new or erratic environment dynamics. We propose FlexPool, a distributed model-free deep reinforcement learning algorithm that jointly serves passengers & goods workloads by learning optimal dispatch policies from its interaction with the environment. The proposed algorithm pools passengers for a ride-sharing service and delivers goods using a multi-hop transit method. These flexibilities decrease the fleets operational cost and environmental footprint while maintaining service levels for passengers and goods. Through simulations on a realistic multi-agent urban mobility platform, we demonstrate that FlexPool outperforms other model-free settings in serving the demands from passengers & goods. FlexPool achieves 30% higher fleet utilization and 35% higher fuel efficiency in comparison to (i) model-free approaches where vehicles transport a combination of passengers & goods without the use of multi-hop transit, and (ii) model-free approaches where vehicles exclusively transport either passengers or goods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا