Do you want to publish a course? Click here

The RapidXMM Upper Limit Server: X-ray aperture photometry of the XMM-Newton archival observations

119   0   0.0 ( 0 )
 Added by Angel Ruiz
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the construction of the RapidXMM database that is available through the XMM-Newton Science Archive and offers access to upper limits and aperture photometry across the field of view of the XMM-Newton Pointed and Slew Survey observations. The feature of RapidXMM is speed. It enables the fast retrieval of X-ray upper limits and photometry products in three energy bands (0.2-2, 2-12, 0.2-12 keV) for large numbers of input sky positions. This is accomplished using the Hierarchical Equal Area Iso Latitude pixelation of the sphere (HEALPix). The pre-calculated upper-limits and associated X-ray photometry products are reprojected into the HEALPix grid of cells before being ingested into the RapidXMM database. This results in tables of upper limits and aperture photometry within HEALPix cells of size ~3 arcsec (Pointed Observations) and ~6 arcsec (Slew Survey). The database tables are indexed by the unique integer number of the HEALPix cells. This reduces spatial nearest-neighbor queries by sky position to an integer-matching exercise and significantly accelerates the retrieval of results. We describe in detail the processing steps that lead from the science products available in the XMM-Newton archive to a database optimised for sky queries. We also present two simple show-case applications of RapidXMM for scientific studies: searching for variable X-ray sources, and stacking analysis of X-ray faint populations



rate research

Read More

We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in May-June 2014. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of its host galaxy NGC 5643 located 0.8 arcmin away. Together with long XMM-Newton observations performed in July 2009 and August 2014, the NuSTAR data confidently reveal a high-energy cutoff in the spectrum of NGC 5643 X-1 above ~10 keV, which is a characteristic signature of ULXs. The NuSTAR and XMM-Newton data are consistent with the source having a constant luminosity ~1.5E40 erg/s (0.2-12 keV) in all but the latest observation (August 2014) when it brightened to ~3E40 erg/s. This increase is associated with the dominant, hard spectral component (presumably collimated emission from the inner regions of a supercritical accretion disc), while an additional, soft component (with a temperature ~0.3 keV if described by multicolor disk emission), possibly associated with a massive wind outflowing from the disk, is also evident in the spectrum but does not exhibit significant variability.
95 - F. Fuerst , C. Mueller (2 , 3 2015
We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with sub-arcminute resolution at X-ray energies above 10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power-law with a photon index {Gamma} = 1.815 +/- 0.005 and a fluorescent Fe K{alpha} line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of E_fold > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between ~100-300 keV, seed photon input temperatures between 5-50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R < 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point-sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum, and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.
121 - G. W. Fraser 2014
The soft X-ray flux produced by solar axions in the Earths magnetic field is evaluated in the context of ESAs XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The EPIC count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11(pn), 4(MOS1) and 5(MOS2) sigma. After examining the constituent observations spatially, temporally and in terms of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earths magnetic field. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2e-22 /GeV is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the micro-eV range. Comparisons with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the 0.01 eV range. Preliminary results are given of a search for axion-conversion X-ray lines, in particular the predicted features due to silicon, sulphur and iron in the solar core, and the 14.4 keV transition line from 57Fe.
207 - M. Galeazzi , A. Gupta , K. Covey 2006
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.
We present the first broadband 0.3-25.0 kev X-ray observations of the bright ultraluminous X-ray source (ULX) Holmberg II X-1, performed by NuSTAR, XMM-Newton and Suzaku in September 2013. The NuSTAR data provide the first observations of Holmberg II X-1 above 10 keV, and reveal a very steep high-energy spectrum, similar to other ULXs observed by NuSTAR to date. These observations further demonstrate that ULXs exhibit spectral states that are not typically seen in Galactic black hole binaries. Comparison with other sources implies that Holmberg II X-1 accretes at a high fraction of its Eddington accretion rate, and possibly exceeds it. The soft X-ray spectrum (E<10 keV) appears to be dominated by two blackbody-like emission components, the hotter of which may be associated with an accretion disk. However, all simple disk models under-predict the NuSTAR data above ~10 keV and require an additional emission component at the highest energies probed, implying the NuSTAR data does not fall away with a Wien spectrum. We investigate physical origins for such an additional high-energy emission component, and favor a scenario in which the excess arises from Compton scattering in a hot corona of electrons with some properties similar to the very-high state seen in Galactic binaries. The observed broadband 0.3-25.0 keV luminosity inferred from these epochs is Lx = (8.1+/-0.1)e39 erg/s, typical for Holmberg II X-1, with the majority of the flux (~90%) emitted below 10 keV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا