Do you want to publish a course? Click here

Potential solar axion signatures in X-ray observations with the XMM-Newton observatory

122   0   0.0 ( 0 )
 Added by Dr. Andy Read
 Publication date 2014
  fields Physics
and research's language is English
 Authors G. W. Fraser




Ask ChatGPT about the research

The soft X-ray flux produced by solar axions in the Earths magnetic field is evaluated in the context of ESAs XMM-Newton observatory. Recent calculations of the scattering of axion-conversion X-rays suggest that the sunward magnetosphere could be an observable source of 0.2-10 keV photons. For XMM-Newton, any conversion X-ray intensity will be seasonally modulated by virtue of the changing visibility of the sunward magnetic field region. A simple model of the geomagnetic field is combined with the ephemeris of XMM-Newton to predict the seasonal variation of the conversion X-ray intensity. This model is compared with stacked XMM-Newton blank sky datasets from which point sources have been systematically removed. Remarkably, a seasonally varying X-ray background signal is observed. The EPIC count rates are in the ratio of their X-ray grasps, indicating a non-instrumental, external photon origin, with significances of 11(pn), 4(MOS1) and 5(MOS2) sigma. After examining the constituent observations spatially, temporally and in terms of the cosmic X-ray background, we conclude that this variable signal is consistent with the conversion of solar axions in the Earths magnetic field. The spectrum is consistent with a solar axion spectrum dominated by bremsstrahlung- and Compton-like processes, i.e. axion-electron coupling dominates over axion-photon coupling and the peak of the axion spectrum is below 1 keV. A value of 2.2e-22 /GeV is derived for the product of the axion-photon and axion-electron coupling constants, for an axion mass in the micro-eV range. Comparisons with limits derived from white dwarf cooling may not be applicable, as these refer to axions in the 0.01 eV range. Preliminary results are given of a search for axion-conversion X-ray lines, in particular the predicted features due to silicon, sulphur and iron in the solar core, and the 14.4 keV transition line from 57Fe.



rate research

Read More

The XMM-Newton observatory shows evidence with an $11 sigma$ confidence level for seasonal variation of the X-ray background in the near-Earth environment in the 2-6 keV energy range (Fraser et al. 2014). The interpretation of the seasonal variation given in Fraser et al. 2014 was based on the assumption that solar axions convert to X-rays in the Earths magnetic field. There are many problems with this interpretation, since the axion-photon conversion must preserve the directionality of the incoming solar axion. At the same time, this direction is avoided by the observations because the XMM-Newtons operations exclude pointing at the Sun and at the Earth. The observed seasonal variation suggests that the signal could have a dark matter origin, since it is very difficult to explain with conventional astrophysical sources. We propose an alternative explanation which involves the so-called Axion Quark Nugget (AQN) dark matter model. In our proposal, dark matter is made of AQNs, which can cross the Earth and emit high energy photons at their exit. We show that the emitted intensity and spectrum is consistent with Fraser et al. 2014, and that our calculation is not sensitive to the specific details of the model. We also find that our proposal predicts a large seasonal variation, on the level of 20-25%, much larger than conventional dark matter models (1-10%). Since the AQN emission spectrum extends up to $sim$100 keV, well beyond the keV sensitivity of XMM-Newton, we predict the AQN contribution to the hard X-ray and $gamma$-ray backgrounds in the Earths environment. The Gamma-Ray Burst Monitor instrument (GBM), aboard the Fermi telescope, is sensitive to the 8 keV-40 MeV energy band. We suggest that the multi-year archival data from the GBM could be used to search for a seasonal variation in the near-Earth environment up to 100 keV as a future test of the AQN framework.
We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in May-June 2014. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of its host galaxy NGC 5643 located 0.8 arcmin away. Together with long XMM-Newton observations performed in July 2009 and August 2014, the NuSTAR data confidently reveal a high-energy cutoff in the spectrum of NGC 5643 X-1 above ~10 keV, which is a characteristic signature of ULXs. The NuSTAR and XMM-Newton data are consistent with the source having a constant luminosity ~1.5E40 erg/s (0.2-12 keV) in all but the latest observation (August 2014) when it brightened to ~3E40 erg/s. This increase is associated with the dominant, hard spectral component (presumably collimated emission from the inner regions of a supercritical accretion disc), while an additional, soft component (with a temperature ~0.3 keV if described by multicolor disk emission), possibly associated with a massive wind outflowing from the disk, is also evident in the spectrum but does not exhibit significant variability.
70 - L. Sidoli , A. Tiengo (2 , 1 2017
We report the results of an XMM-Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on February 14, 2016, during the expected peak of its brief outburst, which repeats every about 165 days. Timing and spectral analysis were performed simultaneously in the energy band 0.4-78 keV. A spin period of 187.0 +/- 0.4 s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares which repeat every 2-2.5 ks, some of which simultaneously observed by both satellites. The broad-band (0.4-78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power-law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40+/-10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 1E36 erg/s (0.1-100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g. centrifugal barrier) cannot be ruled out.
586 - Elise Egron 2011
We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection model. Under the hypothesis that the iron line is produced by reflection from the inner accretion disk, we can infer important information on the physical parameters of the system, such as the inner disk radius, Rin = 25-100 km, and the inclination of the system, 44{deg} < i < 60{deg}.
95 - F. Fuerst , C. Mueller (2 , 3 2015
We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with sub-arcminute resolution at X-ray energies above 10 keV for the first time, but finds no evidence for an extended source or other off-nuclear point-sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power-law with a photon index {Gamma} = 1.815 +/- 0.005 and a fluorescent Fe K{alpha} line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of E_fold > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between ~100-300 keV, seed photon input temperatures between 5-50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R < 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point-sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum, and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا