Do you want to publish a course? Click here

Chiral Selection, Isotopic Abundance Shifts, and Autocatalysis of Meteoritic Amino Acids

160   0   0.0 ( 0 )
 Added by Michael Famiano
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of amino acids in meteorites has presented two clues to the origin of their processing subsequent to their formation: a slight preference for left-handedness in some of them, and isotopic anomalies in some of their constituent atoms. In this article we present theoretical results from the Supernova Neutrino Amino Acid Processing (SNAAP) model, which uses electron anti-neutrinos and the magnetic fields from source objects such as supernovae or colliding neutron stars to selectively destroy one amino acid chirality and to create isotopic abundance shifts. For plausible magnetic fields and electron anti-neutrino fluxes, non-zero, positive enantiomeric excesses, $ee$s, defined to be the relative left/right asymmetry in an amino acid population, are reviewed for two amino acids, and conditions are suggested that would produce $ee>0$ for all of the $alpha$-amino acids. The relatively high energy anti-neutrinos that produce the $ee$s would inevitably also produce isotopic anomalies. A nuclear reaction network was developed to describe the reactions resulting from them and the nuclides in the meteorites. At similar anti-neutrino fluxes, assumed recombination of the detritus from the anti-neutrino interactions is shown to produce appreciable isotopic anomalies in qualitative agreement with those observed for D/$^1$H and $^{15}$N/$^{14}$N. The isotopic anomalies for $^{13}$C/$^{12}$C are predicted to be small, as are also observed. Autocatalysis may be necessary for any model to produce the largest $ee$s observed in meteorites. This allows the constraints of the original SNAAP model to be relaxed, increasing the probability of meteoroid survival in sites where amino acid processing is possible. These results have obvious implications for the origin of life on Earth.



rate research

Read More

Magnetochiral phenomena may be responsible for the selection of chiral states of biomolecules in meteoric environments. For example, the Supernova Amino Acid Processing (SNAAP) Model was proposed previously as a possible mode of magnetochiral selection of amino acids by way of the weak interaction in strong magnetic fields. In earlier work, this model was shown to produce an enantiomeric excess (ee) as high as 0.014% for alanine. In this paper we present the results of molecular quantum chemistry calculations from which $ee$s are determined for the alpha-amino acids plus isovaline and norvaline, which were found to have positive ees in meteorites. Calculations are performed for both isolated and aqueous states. In some cases, the aqueous state was found to produce larger $ee$s reaching values as high as a few percent under plausible conditions.
The correlations of primary and secondary structures were analyzed using proteins with known structure from Protein Data Bank. The correlation values of amino acid type and the eight secondary structure types at distant position were calculated for distances between -25 and 25. Shapes of the diagrams indicate that amino acids polarity and capability for hydrogen bonding have influence on the secondary structure at some distances. Clear preference of most of the amino acids towards certain secondary structure type classifies amino acids into four groups: alpha-helix admirers, strand admirers, turn and bend admirers and the others. Group four consists of His and Cis, the amino acids that do not show clear preference for any secondary structure. Amino acids from a group have similar physicochemical properties, and the same structural characteristics. The results suggest that amino acid preference for secondary structure type is based on the structural characteristics at Cb and Cg atoms of amino acid. alpha-helix admirers do not have polar heteroatoms on Cb and Cg atoms, nor branching or aromatic group on Cb atom. Amino acids that have aromatic groups or branching on Cb atom are strand admirers. Turn and bend admirers have polar heteroatom on Cb or Cg atoms or do not have Cb atom at all. Our results indicate that polarity and capability for hydrogen bonding have influence on the secondary structure at some distance, and that amino acid preference for secondary structure is caused by structural properties at Cb or Cg atoms.
A two amino acid (hydrophobic and polar) scheme is used to perform the design on target conformations corresponding to the native states of twenty single chain proteins. Strikingly, the percentage of successful identification of the nature of the residues benchmarked against naturally occurring proteins and their homologues is around 75 % independent of the complexity of the design procedure. Typically, the lowest success rate occurs for residues such as alanine that have a high secondary structure functionality. Using a simple lattice model, we argue that one possible shortcoming of the model studied may involve the coarse-graining of the twenty kinds of amino acids into just two effective types.
In this work, we studied the stability of the glycine molecule in the crystalline zwitterion form, known as {alpha}-glycine ($^{+}$NH$_{3}$CH$_{2}$COO$^{-}$) under action of heavy cosmic ray analogs. The experiments were conducted in a high vacuum chamber at heavy ions accelerator GANIL, in Caen, France. The samples were bombarded at two temperatures (14 K and 300 K) by $^{58}$Ni$^{11+}$ ions of 46 MeV until the final fluence of $10^{13}$ ions cm$^{-2}$. The chemical evolution of the sample was evaluated in-situ using Fourrier Transformed Infrared (FTIR) spectrometer. The bombardment at 14 K produced several daughter species such as OCN$^-$, CO, CO$_2$, and CN$^-$. The results also suggest the appearing of peptide bonds during irradiation but this must be confirmed by further experiments. The halflives of glycine in Interstellar Medium were estimated to be 7.8 $times 10^3$ years (300 K) and 2.8 $times 10^3$ years (14 K). In the Solar System the values were 8.4 $times 10^2$ years (300 K) and 3.6 $times 10^3$ years (14 K). It is believed that glycine could be present in space environments that suffered aqueous changes such as the interior of comets, meteorites and planetesimals. This molecule is present in proteins of all alive beings. So, studying its stability in these environments provides further understanding about the role of this specie in the prebiotic chemistry on Earth.
81 - Tim Lichtenberg 2016
Heating by short-lived radioisotopes (SLRs) such as aluminum-26 and iron-60 fundamentally shaped the thermal history and interior structure of Solar System planetesimals during the early stages of planetary formation. The subsequent thermo-mechanical evolution, such as internal differentiation or rapid volatile degassing, yields important implications for the final structure, composition and evolution of terrestrial planets. SLR-driven heating in the Solar System is sensitive to the absolute abundance and homogeneity of SLRs within the protoplanetary disk present during the condensation of the first solids. In order to explain the diverse compositions found for extrasolar planets, it is important to understand the distribution of SLRs in active planet formation regions (star clusters) during their first few Myr of evolution. By constraining the range of possible effects, we show how the imprint of SLRs can be extrapolated to exoplanetary systems and derive statistical predictions for the distribution of aluminum-26 and iron-60 based on N-body simulations of typical to large clusters (1000-10000 stars) with a range of initial conditions. We quantify the pollution of protoplanetary disks by supernova ejecta and show that the likelihood of enrichment levels similar to or higher than the Solar System can vary considerably, depending on the cluster morphology. Furthermore, many enriched systems show an excess in radiogenic heating compared to Solar System levels, which implies that the formation and evolution of planetesimals could vary significantly depending on the birth environment of their host stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا