Do you want to publish a course? Click here

Dissecting Generation Modes for Abstractive Summarization Models via Ablation and Attribution

59   0   0.0 ( 0 )
 Added by Jiacheng Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the prominence of neural abstractive summarization models, we know little about how they actually form summaries and how to understand where their decisions come from. We propose a two-step method to interpret summarization model decisions. We first analyze the models behavior by ablating the full model to categorize each decoder decision into one of several generation modes: roughly, is the model behaving like a language model, is it relying heavily on the input, or is it somewhere in between? After isolating decisions that do depend on the input, we explore interpreting these decisions using several different attribution methods. We compare these techniques based on their ability to select content and reconstruct the models predicted token from perturbations of the input, thus revealing whether highlighted attributions are truly important for the generation of the next token. While this machinery can be broadly useful even beyond summarization, we specifically demonstrate its capability to identify phrases the summarization model has memorized and determine where in the training pipeline this memorization happened, as well as study complex generation phenomena like sentence fusion on a per-instance basis.



rate research

Read More

Sentences produced by abstractive summarization systems can be ungrammatical and fail to preserve the original meanings, despite being locally fluent. In this paper we propose to remedy this problem by jointly generating a sentence and its syntactic dependency parse while performing abstraction. If generating a word can introduce an erroneous relation to the summary, the behavior must be discouraged. The proposed method thus holds promise for producing grammatical sentences and encouraging the summary to stay true-to-original. Our contributions of this work are twofold. First, we present a novel neural architecture for abstractive summarization that combines a sequential decoder with a tree-based decoder in a synchronized manner to generate a summary sentence and its syntactic parse. Secondly, we describe a novel human evaluation protocol to assess if, and to what extent, a summary remains true to its original meanings. We evaluate our method on a number of summarization datasets and demonstrate competitive results against strong baselines.
129 - Meng Cao , Yue Dong , Jiapeng Wu 2020
Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries for abstractive summarization systems is a challenge. We propose a post-editing corrector module to address this issue by identifying and correcting factual errors in generated summaries. The neural corrector model is pre-trained on artificial examples that are created by applying a series of heuristic transformations on reference summaries. These transformations are inspired by an error analysis of state-of-the-art summarization model outputs. Experimental results show that our model is able to correct factual errors in summaries generated by other neural summarization models and outperforms previous models on factual consistency evaluation on the CNN/DailyMail dataset. We also find that transferring from artificial error correction to downstream settings is still very challenging.
In this paper, we present a denoising sequence-to-sequence (seq2seq) autoencoder via contrastive learning for abstractive text summarization. Our model adopts a standard Transformer-based architecture with a multi-layer bi-directional encoder and an auto-regressive decoder. To enhance its denoising ability, we incorporate self-supervised contrastive learning along with various sentence-level document augmentation. These two components, seq2seq autoencoder and contrastive learning, are jointly trained through fine-tuning, which improves the performance of text summarization with regard to ROUGE scores and human evaluation. We conduct experiments on two datasets and demonstrate that our model outperforms many existing benchmarks and even achieves comparable performance to the state-of-the-art abstractive systems trained with more complex architecture and extensive computation resources.
166 - Yuning Mao , Xiang Ren , Heng Ji 2020
Summaries generated by abstractive summarization are supposed to only contain statements entailed by the source documents. However, state-of-the-art abstractive methods are still prone to hallucinate content inconsistent with the source documents. In this paper, we propose constrained abstractive summarization (CAS), a general setup that preserves the factual consistency of abstractive summarization by specifying tokens as constraints that must be present in the summary. We explore the feasibility of using lexically constrained decoding, a technique applicable to any abstractive method with beam search decoding, to fulfill CAS and conduct experiments in two scenarios: (1) Standard summarization without human involvement, where keyphrase extraction is used to extract constraints from source documents; (2) Interactive summarization with human feedback, which is simulated by taking missing tokens in the reference summaries as constraints. Automatic and human evaluations on two benchmark datasets demonstrate that CAS improves the quality of abstractive summaries, especially on factual consistency. In particular, we observe up to 11.2 ROUGE-2 gains when several ground-truth tokens are used as constraints in the interactive summarization scenario.
87 - Jiaao Chen , Diyi Yang 2021
Abstractive conversation summarization has received much attention recently. However, these generated summaries often suffer from insufficient, redundant, or incorrect content, largely due to the unstructured and complex characteristics of human-human interactions. To this end, we propose to explicitly model the rich structures in conversations for more precise and accurate conversation summarization, by first incorporating discourse relations between utterances and action triples (who-doing-what) in utterances through structured graphs to better encode conversations, and then designing a multi-granularity decoder to generate summaries by combining all levels of information. Experiments show that our proposed models outperform state-of-the-art methods and generalize well in other domains in terms of both automatic evaluations and human judgments. We have publicly released our code at https://github.com/GT-SALT/Structure-Aware-BART.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا