Do you want to publish a course? Click here

Unsharp Mask Guided Filtering

71   0   0.0 ( 0 )
 Added by Zenglin Shi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering by means of an additional guidance image. Where classical guided filters transfer structures using hand-designed functions, recent guided filters have been considerably advanced through parametric learning of deep networks. The state-of-the-art leverages deep networks to estimate the two core coefficients of the guided filter. In this work, we posit that simultaneously estimating both coefficients is suboptimal, resulting in halo artifacts and structure inconsistencies. Inspired by unsharp masking, a classical technique for edge enhancement that requires only a single coefficient, we propose a new and simplified formulation of the guided filter. Our formulation enjoys a filtering prior from a low-pass filter and enables explicit structure transfer by estimating a single coefficient. Based on our proposed formulation, we introduce a successive guided filtering network, which provides multiple filtering results from a single network, allowing for a trade-off between accuracy and efficiency. Extensive ablations, comparisons and analysis show the effectiveness and efficiency of our formulation and network, resulting in state-of-the-art results across filtering tasks like upsampling, denoising, and cross-modality filtering. Code is available at url{https://github.com/shizenglin/Unsharp-Mask-Guided-Filtering}.

rate research

Read More

We propose Mask Guided (MG) Matting, a robust matting framework that takes a general coarse mask as guidance. MG Matting leverages a network (PRN) design which encourages the matting model to provide self-guidance to progressively refine the uncertain regions through the decoding process. A series of guidance mask perturbation operations are also introduced in the training to further enhance its robustness to external guidance. We show that PRN can generalize to unseen types of guidance masks such as trimap and low-quality alpha matte, making it suitable for various application pipelines. In addition, we revisit the foreground color prediction problem for matting and propose a surprisingly simple improvement to address the dataset issue. Evaluation on real and synthetic benchmarks shows that MG Matting achieves state-of-the-art performance using various types of guidance inputs. Code and models are available at https://github.com/yucornetto/MGMatting.
Pedestrian detection relying on deep convolution neural networks has made significant progress. Though promising results have been achieved on standard pedestrians, the performance on heavily occluded pedestrians remains far from satisfactory. The main culprits are intra-class occlusions involving other pedestrians and inter-class occlusions caused by other objects, such as cars and bicycles. These result in a multitude of occlusion patterns. We propose an approach for occluded pedestrian detection with the following contributions. First, we introduce a novel mask-guided attention network that fits naturally into popular pedestrian detection pipelines. Our attention network emphasizes on visible pedestrian regions while suppressing the occluded ones by modulating full body features. Second, we empirically demonstrate that coarse-level segmentation annotations provide reasonable approximation to their dense pixel-wise counterparts. Experiments are performed on CityPersons and Caltech datasets. Our approach sets a new state-of-the-art on both datasets. Our approach obtains an absolute gain of 9.5% in log-average miss rate, compared to the best reported results on the heavily occluded (HO) pedestrian set of CityPersons test set. Further, on the HO pedestrian set of Caltech dataset, our method achieves an absolute gain of 5.0% in log-average miss rate, compared to the best reported results. Code and models are available at: https://github.com/Leotju/MGAN.
In this work, we present a novel mask guided attention (MGA) method for fine-grained patchy image classification. The key challenge of fine-grained patchy image classification lies in two folds, ultra-fine-grained inter-category variances among objects and very few data available for training. This motivates us to consider employing more useful supervision signal to train a discriminative model within limited training samples. Specifically, the proposed MGA integrates a pre-trained semantic segmentation model that produces auxiliary supervision signal, i.e., patchy attention mask, enabling a discriminative representation learning. The patchy attention mask drives the classifier to filter out the insignificant parts of images (e.g., common features between different categories), which enhances the robustness of MGA for the fine-grained patchy image classification. We verify the effectiveness of our method on three publicly available patchy image datasets. Experimental results demonstrate that our MGA method achieves superior performance on three datasets compared with the state-of-the-art methods. In addition, our ablation study shows that MGA improves the accuracy by 2.25% and 2% on the SoyCultivarVein and BtfPIS datasets, indicating its practicality towards solving the fine-grained patchy image classification.
Recently end-to-end scene text spotting has become a popular research topic due to its advantages of global optimization and high maintainability in real applications. Most methods attempt to develop various region of interest (RoI) operations to concatenate the detection part and the sequence recognition part into a two-stage text spotting framework. However, in such framework, the recognition part is highly sensitive to the detected results (emph{e.g.}, the compactness of text contours). To address this problem, in this paper, we propose a novel Mask AttentioN Guided One-stage text spotting framework named MANGO, in which character sequences can be directly recognized without RoI operation. Concretely, a position-aware mask attention module is developed to generate attention weights on each text instance and its characters. It allows different text instances in an image to be allocated on different feature map channels which are further grouped as a batch of instance features. Finally, a lightweight sequence decoder is applied to generate the character sequences. It is worth noting that MANGO inherently adapts to arbitrary-shaped text spotting and can be trained end-to-end with only coarse position information (emph{e.g.}, rectangular bounding box) and text annotations. Experimental results show that the proposed method achieves competitive and even new state-of-the-art performance on both regular and irregular text spotting benchmarks, i.e., ICDAR 2013, ICDAR 2015, Total-Text, and SCUT-CTW1500.
Recent advancements in conditional Generative Adversarial Networks (cGANs) have shown promises in label guided image synthesis. Semantic masks, such as sketches and label maps, are another intuitive and effective form of guidance in image synthesis. Directly incorporating the semantic masks as constraints dramatically reduces the variability and quality of the synthesized results. We observe this is caused by the incompatibility of features from different inputs (such as mask image and latent vector) of the generator. To use semantic masks as guidance whilst providing realistic synthesized results with fine details, we propose to use mask embedding mechanism to allow for a more efficient initial feature projection in the generator. We validate the effectiveness of our approach by training a mask guided face generator using CELEBA-HQ dataset. We can generate realistic and high resolution facial images up to the resolution of 512*512 with a mask guidance. Our code is publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا