Do you want to publish a course? Click here

Single-component gradient rules for variational quantum algorithms

79   0   0.0 ( 0 )
 Added by Thomas Hubregtsen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Many near-term quantum computing algorithms are conceived as variational quantum algorithms, in which parameterized quantum circuits are optimized in a hybrid quantum-classical setup. Examples are variational quantum eigensolvers, quantum approximate optimization algorithms as well as various algorithms in the context of quantum-assisted machine learning. A common bottleneck of any such algorithm is constituted by the optimization of the variational parameters. A popular set of optimization methods work on the estimate of the gradient, obtained by means of circuit evaluations. We will refer to the way in which one can combine these circuit evaluations as gradient rules. This work provides a comprehensive picture of the family of gradient rules that vary parameters of quantum gates individually. The most prominent known members of this family are the parameter shift rule and the finite differences method. To unite this family, we propose a generalized parameter shift rule that expresses all members of the aforementioned family as special cases, and discuss how all of these can be seen as providing access to a linear combination of exact first- and second-order derivatives. We further prove that a parameter shift rule with one non-shifted evaluation and only one shifted circuit evaluation can not exist does not exist, and introduce a novel perspective for approaching new gradient rules.



rate research

Read More

Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjust the parameters of the quantum circuit so that the objective function is minimized. However, they often suffer from the so-called vanishing gradient or barren plateau issue. On the other hand, the normalized gradient descent (NGD) method, which employs the normalized gradient vector to update the parameters, has been successfully utilized in several optimization problems. Here, we study the performance of the NGD methods in the optimization of VQAs for the first time. Our goal is two-fold. The first is to examine the effectiveness of NGD and its variants for overcoming the vanishing gradient problems. The second is to propose a new NGD that can attain the faster convergence than the ordinary NGD. We performed numerical simulations of these gradient-based optimizers in the context of quantum chemistry where VQAs are used to find the ground state of a given Hamiltonian. The results show the effective convergence property of the NGD methods in VQAs, compared to the relevant optimizers without normalization. Moreover, we make use of some normalized gradient vectors at the past iteration steps to propose the novel historical NGD that has a theoretical guarantee to accelerate the convergence speed, which is observed in the numerical experiments as well.
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications, although fault-tolerant quantum computers will likely not be available for several years. Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. In this review article we present an overview of the field of VQAs. Furthermore, we discuss strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage.
In this work, we present a quantum neighborhood preserving embedding and a quantum local discriminant embedding for dimensionality reduction and classification. We demonstrate that these two algorithms have an exponential speedup over their respectively classical counterparts. Along the way, we propose a variational quantum generalized eigenvalue solver that finds the generalized eigenvalues and eigenstates of a matrix pencil $(mathcal{G},mathcal{S})$. As a proof-of-principle, we implement our algorithm to solve $2^5times2^5$ generalized eigenvalue problems. Finally, our results offer two optional outputs with quantum or classical form, which can be directly applied in another quantum or classical machine learning process.
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages over classical methods. Nevertheless, modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large-volume data. As such, to better exert the superiority of VQAs, it is of great significance to improve their runtime efficiency. Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue. Specifically, in QUDIO, a classical central server partitions the learning problem into multiple subproblems and allocate them to multiple local nodes where each of them consists of a quantum processor and a classical optimizer. During the training procedure, all local nodes proceed parallel optimization and the classical server synchronizes optimization information among local nodes timely. In doing so, we prove a sublinear convergence rate of QUDIO in terms of the number of global iteration under the ideal scenario, while the system imperfection may incur divergent optimization. Numerical results on standard benchmarks demonstrate that QUDIO can surprisingly achieve a superlinear runtime speedup with respect to the number of local nodes. Our proposal can be readily mixed with other advanced VQAs-based techniques to narrow the gap between the state of the art and applications with quantum advantage.
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficiently and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schr{o}dinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا