Do you want to publish a course? Click here

High-ionization emission line ratios from quasar broad line regions: metallicity or density?

104   0   0.0 ( 0 )
 Added by Matthew Temple
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flux ratios of high-ionization lines are commonly assumed to indicate the metallicity of the broad emission line region in luminous quasars. When accounting for the variation in their kinematic profiles, we show that the NV/CIV, (SiIV+OIV])/CIV and NV/Lya line ratios do not vary as a function of the quasar continuum luminosity, black hole mass, or accretion rate. Using photoionization models from CLOUDY , we further show that the observed changes in these line ratios can be explained by emission from gas with solar abundances, if the physical conditions of the emitting gas are allowed to vary over a broad range of densities and ionizing fluxes. The diversity of broad line emission in quasar spectra can be explained by a model with emission from two kinematically distinct regions, where the line ratios suggest that these regions have either very different metallicity or density. Both simplicity and current galaxy evolution models suggest that near-solar abundances, with parts of the spectrum forming in high-density clouds, are more likely. Within this paradigm, objects with stronger outflow signatures show stronger emission from gas which is denser and located closer to the ionizing source, at radii consistent with simulations of line-driven disc-winds. Studies using broad-line ratios to infer chemical enrichment histories should consider changes in density and ionizing flux before estimating metallicities.



rate research

Read More

580 - Hai Fu , Alan Stockton 2007
We present a correlation between the presence of luminous extended emission-line regions (EELRs) and the metallicity of the broad-line regions (BLRs) of low-redshift quasars. The result is based on ground-based [O III] 5007 narrow-band imaging and Hubble Space Telescope UV spectra of 12 quasars at 0.20 < z < 0.45. Quasars showing luminous EELRs have low-metallicity BLRs (Z < 0.6 Z_Solar), while the remaining quasars show typical metal-rich gas (Z > Z_Solar). Previous studies have shown that EELRs themselves also have low metallicities (Z < 0.5 Z_Solar). The correlation between the occurrence of EELRs and the metallicity of the BLRs, strengthened by the sub-Solar metallicity in both regions, indicates a common external origin for the gas, almost certainly from the merger of a gas-rich galaxy. Our results provide the first direct observational evidence that the gas from a merger can indeed be driven down to the immediate vicinity (< 1 pc) of the central black hole.
130 - Ohad Shemmer 2010
We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad H_beta line and we place tight upper limits on the strengths of their [O III] lines. Virial, H_beta-based black-hole mass determinations indicate normalized accretion rates of L/L_Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Gamma=1.91^{+0.24}_{-0.22} which supports the virial L/L_Edd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.
We demonstrate a new technique for determining the physical conditions of the broad line emitting gas in quasars, using near-infrared hydrogen emission lines. Unlike higher ionisation species, hydrogen is an efficient line emitter for a very wide range of photoionisation conditions, and the observed line ratios depend strongly on the density and photoionisation state of the gas present. A locally optimally emitting cloud model of the broad emission line region was compared to measured emission lines of four nearby ($zapprox0.2$) quasars that have optical and NIR spectra of sufficient signal-to-noise to measure their Paschen lines. The model provides a good fit to three of the objects, and a fair fit to the fourth object, a ULIRG. We find that low incident ionising fluxes ($phih<10^{18}$cmsqs), and high gas densities ($ h>10^{12}$cmcu) are required to reproduce the observed hydrogen emission line ratios. This analysis demonstrates that the use of composite spectra in photoionisation modelling is inappropriate; models must be fitted to the individual spectra of quasars.
242 - Sherry C. C. Yeh 2013
The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII regions line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that HII regions are wind-blown bubbles and that they have high ionization parameters; some popular HII region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of HII regions.
Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spectral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا