Do you want to publish a course? Click here

Evolution of Broad-line Emission from Active Galactic Nuclei

204   0   0.0 ( 0 )
 Added by Moshe Elitzur
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spectral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.



rate research

Read More

Most results of the reverberation monitoring of active galaxies showed a universal scaling of the time delay of the Hbeta emission region with the monochromatic flux at 5100 A, with very small dipersion. Such a scaling favored the dust-based formation mechanism of the Broad Line Region (BLR). Recent reverberation measurements showed that actually a significant fraction of objects exhibits horter lags than the previously found scaling. Here we demonstrate that these shorter lags can be explained by the old concept of scaling of the BLR size with the ionization parameter. Assuming a universal value of this parameter and universal value of the cloud density reproduces the distribution of observational points in the time delay vs. monochromatic flux plane, provided that a range of black hole spins is allowed. However, a confirmation of the new measurements for low/moderate Eddington ratio sources is strongly needed before the dust-based origin of the BLR can be excluded.
Supermassive black holes (SMBHs) have been found to be ubiquitous in the nuclei of early-type galaxies and of bulges of spirals. There are evidences of a tight correlation between the SMBH masses, the velocity dispersions of stars in the spheroidal components galaxies and other galaxy properties. Also the evolution of the luminosity density due to nuclear activity is similar to that due to star formation. All that suggests an evolutionary connection between Active Galactic Nuclei (AGNs) and their host galaxies. After a review of these evidences this lecture discusses how AGNs can affect the host galaxies. Other feedback processes advocated to account for the differences between the halo and the stellar mass functions are also briefly introduced.
We have investigated the ensemble regularities of the equivalent widths (EWs) of MgII 2800 emission line of active galactic nuclei (AGNs), using a uniformly selected sample of 2092 Seyfert 1 galaxies and quasars at 0.45 <= z <= 0.8 in the spectroscopic data set of Sloan Digital Sky Survey Fourth Data Release. We find a strong correlation between the EW of MgII and the AGN Eddington ratio (L/L_Edd): EW(MgII) propto (L/L_Edd)^{-0.4}. Furthermore, for AGNs with the same L/L_Edd, their EWs of MgII show no correlation with luminosity, black hole mass or line width, and the MgII line luminosity is proportional to continuum luminosity, as expected by photoionization theory. Our result shows that MgII EW is not dependent on luminosity, but is solely governed by L/L_Edd.
112 - J.-M. Wang , J.-Q. Ge , C. Hu 2011
It has been suggested that the high metallicity generally observed in active galactic nuclei (AGNs) and quasars originates from ongoing star formation in the self-gravitating part of accretion disks around the supermassive black holes. We designate this region as the star forming (SF) disk, in which metals are produced from supernova explosions (SNexp) while at the same time inflows are driven by SNexp-excited turbulent viscosity to accrete onto the SMBHs. In this paper, an equation of metallicity governed by SNexp and radial advection is established to describe the metal distribution and evolution in the SF disk. We find that the metal abundance is enriched at different rates at different positions in the disk, and that a metallicity gradient is set up that evolves for steady-state AGNs. Metallicity as an integrated physical parameter can be used as a probe of the SF disk age during one episode of SMBH activity. In the SF disk, evaporation of molecular clouds heated by SNexp blast waves unavoidably forms hot gas. This heating is eventually balanced by the cooling of the hot gas, but we show that the hot gas will escape from the SF disk before being cooled, and diffuse into the BLRs forming with a typical rate of $sim 1sunmyr$. The diffusion of hot gas from a SF disk depends on ongoing star formation, leading to the metallicity gradients in BLR observed in AGNs. We discuss this and other observable consequences of this scenario.
97 - Pu Du , Jian-Min Wang , Chen Hu 2016
Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by ${cal D}_{_{rm Hbeta}}={rm FWHM}/sigma_{_{rm Hbeta}}$, the ratio of full width at half maximum to the dispersion of broad H$beta$, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate ($dot{mathscr{M}}$) or Eddington ratio ($L_{rm bol}/L_{rm Edd}$). At the same time, $dot{mathscr{M}}$ and $L_{rm bol}/L_{rm Edd}$ correlate with ${cal R}_{rm Fe}$, the ratio of optical Fe II to H$beta$ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad H$beta$, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form $log(dot{mathscr{M}},L_{rm bol}/L_{rm Edd})=alpha+beta{cal D}_{_{rm Hbeta}}+gamma{cal R}_{rm Fe},$ where $alpha=(2.47,0.31)$, $beta=-(1.59,0.82)$ and $gamma=(1.34,0.80)$. We refer to this as the fundamental plane of the BLR. We apply the plane to a sample of $z < 0.8$ quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا