Do you want to publish a course? Click here

Ultrarelativistic electrons in counterpropagating laser beams

256   0   0.0 ( 0 )
 Added by Qingzheng Lyu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics and radiation of ultrarelativistic electrons in strong counterpropagating laser beams are investigated. Assuming that the particle energy is the dominant scale in the problem, an approximate solution of classical equations of motion is derived and the characteristic features of the motion are examined. A specific regime is found with comparable strong field quantum parameters of the beams, when the electron trajectory exhibits ultrashort spike-like features, which bears great significance to the corresponding radiation properties. An analytical expression for the spectral distribution of spontaneous radiation is derived in the framework of the Baier-Katkov semiclassical approximation based on the classical trajectory. All the analytical results are further validated by exact numerical calculations. We consider a non-resonant regime of interaction, when the laser frequencies in the electron rest frame are far from each other, avoiding stimulated emission. Special attention is devoted to settings when the description of radiation via the local constant field approximation fails and to corresponding spectral features. Periodic and non-periodic regimes are considered, when lab frequencies of the laser waves are always commensurate. The sensitivity of spectra with respect to the electron beam spread, focusing and finite duration of the laser beams is explored.



rate research

Read More

Stochasticity effects in the spin (de)polarization of an ultrarelativistic electron beam during photon emissions in a counterpropoagating ultrastrong focused laser pulse in the quantum radiation reaction regime are investigated. We employ a Monte Carlo method to describe the electron dynamics semiclassically, and photon emissions as well as the electron radiative polarization quantum mechanically. While in the latter the photon emission is inherently stochastic, we were able to identify its imprints in comparison with the new developed semiclassical stochasticity-free method of radiative polarization applicable in the quantum regime. With an initially spin-polarized electron beam, the stochastic spin effects are seen in the dependence of the depolarization degree on the electron scattering angle and the electron final energy (spin stochastic diffusion). With an initially unpolarized electron beam, the spin stochasticity is exhibited in enhancing the known effect of splitting of the electron beam along the propagation direction into two oppositely polarized parts by an elliptically polarized laser pulse. The considered stochasticity effects for the spin are observable with currently achievable laser and electron beam parameters.
Relativistic spin-polarized positron beams are indispensable for future electron-positron colliders to test modern high-energy physics theory with high precision. However, present techniques require very large scale facilities for those experiments. We put forward a novel efficient way for generating ultrarelativistic polarized positron beams employing currently available laser fields. For this purpose the generation of polarized positrons via multiphoton Breit-Wheeler pair production and the associated spin dynamics in single-shot interaction of an ultraintense laser pulse with an ultrarelativistic electron beam is investigated in the quantum radiation-dominated regime. A specifically tailored small ellipticity of the laser field is shown to promote splitting of the polarized particles along the minor axis of laser polarization into two oppositely polarized beams. In spite of radiative de-polarization, a dense positron beam with up to about 90% polarization can be generated in tens of femtoseconds. The method may eventually usher high-energy physics studies into smaller-scale laser laboratories.
138 - S. Kar , K. Markey , P.T. Simpson 2007
The emission characteristics of intense laser driven protons are controlled using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a few ps timescale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.
The production of a highly-polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarizations effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the post-selection procedure to generate high-quality positrons in further applications. In a feasible scenario, a highly polarized ($40%-65%$), intense ($10^5$/bunch$-10^6 $/bunch), collimated ($5$mrad$-70$ mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science .
Interaction of an ultrastrong short laser pulse with non-prepolarized near-critical density plasma is investigated in an ultrarelativistic regime, with an emphasis on the radiative spin polarization of ejected electrons. Our particle-in-cell simulations show explicit correlations between the angle resolved electron polarization and the structure and properties of the transient quasistatic plasma magnetic field. While the magnitude of the spin signal is the indicator of the magnetic field strength created by the longitudinal electron current, the asymmetry of electron polarization is found to gauge the island-like magnetic distribution which emerges due to the transverse current induced by the laser wave front. Our studies demonstrate that the spin degree of freedom of ejected electrons could potentially serve as an efficient tool to retrieve the features of strong plasma fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا