Do you want to publish a course? Click here

Dynamic Control of Laser Produced Proton Beams

148   0   0.0 ( 0 )
 Added by Satyabrata Kar
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The emission characteristics of intense laser driven protons are controlled using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a few ps timescale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.



rate research

Read More

A cascaded ion acceleration scheme is proposed by use of ultrashort laser-irradiated microtubes. When the electrons of a microtube are blown away by intense laser pulses, strong charge-separation electric fields are formed in the microtube both along the axial and along the radial directions. By controlling the time delay between the laser pulses and a pre-accelerated proton beam injected along the microtube axis, we demonstrate that this proton beam can be further accelerated by the transient axial electric field in the laser-irradiated microtube. Moreover, the collimation of the injected proton beam can be enhanced by the inward radial electric field. Numerical simulations show that this cascaded ion acceleration scheme works efficiently even at non-relativistic laser intensities, and it can be applied to injected proton beams in the energy range from 1 to 100 MeV. Therefore, it is particularly suitable for cascading acceleration of protons to higher energy.
Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.
We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide gas, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio $sim$ 94% are obtained.
We report on experimental investigations of proton acceleration from solid foils irradiated with PW-class laser-pulses, where highest proton cut-off energies were achieved for temporal pulse parameters that varied significantly from those of an ideally Fourier transform limited (FTL) pulse. Controlled spectral phase modulation of the driver laser by means of an acousto-optic programmable dispersive filter enabled us to manipulate the temporal shape of the last picoseconds around the main pulse and to study the effect on proton acceleration from thin foil targets. The results show that applying positive third order dispersion values to short pulses is favourable for proton acceleration and can lead to maximum energies of 70 MeV in target normal direction at 18 J laser energy for thin plastic foils, significantly enhancing the maximum energy compared to ideally compressed FTL pulses. The paper further proves the robustness and applicability of this enhancement effect for the use of different target materials and thicknesses as well as laser energy and temporal intensity contrast settings. We demonstrate that application relevant proton beam quality was reliably achieved over many months of operation with appropriate control of spectral phase and temporal contrast conditions using a state-of-the-art high-repetition rate PW laser system.
Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It exploits amplification of plasma afterglow arising from the passage of an electron beam through a laser-generated plasma filament. The corresponding photon yield carries the spatiotemporal signature of the femtosecond-scale dynamics, yet can be observed as a visible light signal on microsecond-millimetre scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا