Do you want to publish a course? Click here

Lower Perplexity is Not Always Human-Like

96   0   0.0 ( 0 )
 Added by Tatsuki Kuribayashi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In computational psycholinguistics, various language models have been evaluated against human reading behavior (e.g., eye movement) to build human-like computational models. However, most previous efforts have focused almost exclusively on English, despite the recent trend towards linguistic universal within the general community. In order to fill the gap, this paper investigates whether the established results in computational psycholinguistics can be generalized across languages. Specifically, we re-examine an established generalization -- the lower perplexity a language model has, the more human-like the language model is -- in Japanese with typologically different structures from English. Our experiments demonstrate that this established generalization exhibits a surprising lack of universality; namely, lower perplexity is not always human-like. Moreover, this discrepancy between English and Japanese is further explored from the perspective of (non-)uniform information density. Overall, our results suggest that a cross-lingual evaluation will be necessary to construct human-like computational models.



rate research

Read More

Attention mechanisms play a central role in NLP systems, especially within recurrent neural network (RNN) models. Recently, there has been increasing interest in whether or not the intermediate representations offered by these modules may be used to explain the reasoning for a models prediction, and consequently reach insights regarding the models decision-making process. A recent paper claims that `Attention is not Explanation (Jain and Wallace, 2019). We challenge many of the assumptions underlying this work, arguing that such a claim depends on ones definition of explanation, and that testing it needs to take into account all elements of the model, using a rigorous experimental design. We propose four alternative tests to determine when/whether attention can be used as explanation: a simple uniform-weights baseline; a variance calibration based on multiple random seed runs; a diagnostic framework using frozen weights from pretrained models; and an end-to-end adversarial attention training protocol. Each allows for meaningful interpretation of attention mechanisms in RNN models. We show that even when reliable adversarial distributions can be found, they dont perform well on the simple diagnostic, indicating that prior work does not disprove the usefulness of attention mechanisms for explainability.
With the increasing empirical success of distributional models of compositional semantics, it is timely to consider the types of textual logic that such models are capable of capturing. In this paper, we address shortcomings in the ability of current models to capture logical operations such as negation. As a solution we propose a tripartite formulation for a continuous vector space representation of semantics and subsequently use this representation to develop a formal compositional notion of negation within such models.
201 - Laurence Aitchison 2019
Recent work has argued that neural networks can be understood theoretically by taking the number of channels to infinity, at which point the outputs become Gaussian process (GP) distributed. However, we note that infinite Bayesian neural networks lack a key facet of the behaviour of real neural networks: the fixed kernel, determined only by network hyperparameters, implies that they cannot do any form of representation learning. The lack of representation or equivalently kernel learning leads to less flexibility and hence worse performance, giving a potential explanation for the inferior performance of infinite networks observed in the literature (e.g. Novak et al. 2019). We give analytic results characterising the prior over representations and representation learning in finite deep linear networks. We show empirically that the representations in SOTA architectures such as ResNets trained with SGD are much closer to those suggested by our deep linear results than by the corresponding infinite network. This motivates the introduction of a new class of network: infinite networks with bottlenecks, which inherit the theoretical tractability of infinite networks while at the same time allowing representation learning.
Dark matter interacting with the Standard Model fermions through new scalars or pseudoscalars with flavour-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavoured quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavour violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by $30$--$90%$, depending on the mass assumed for the mediator particle.
Recommender system usually suffers from severe popularity bias -- the collected interaction data usually exhibits quite imbalanced or even long-tailed distribution over items. Such skewed distribution may result from the users conformity to the group, which deviates from reflecting users true preference. Existing efforts for tackling this issue mainly focus on completely eliminating popularity bias. However, we argue that not all popularity bias is evil. Popularity bias not only results from conformity but also item quality, which is usually ignored by existing methods. Some items exhibit higher popularity as they have intrinsic better property. Blindly removing the popularity bias would lose such important signal, and further deteriorate model performance. To sufficiently exploit such important information for recommendation, it is essential to disentangle the benign popularity bias caused by item quality from the harmful popularity bias caused by conformity. Although important, it is quite challenging as we lack an explicit signal to differentiate the two factors of popularity bias. In this paper, we propose to leverage temporal information as the two factors exhibit quite different patterns along the time: item quality revealing item inherent property is stable and static while conformity that depends on items recent clicks is highly time-sensitive. Correspondingly, we further propose a novel Time-aware DisEntangled framework (TIDE), where a click is generated from three components namely the static item quality, the dynamic conformity effect, as well as the user-item matching score returned by any recommendation model. Lastly, we conduct interventional inference such that the recommendation can benefit from the benign popularity bias while circumvent the harmful one. Extensive experiments on three real-world datasets demonstrated the effectiveness of TIDE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا