No Arabic abstract
We propose a reliable scheme to recover the photon blockade effect in the dispersive-Jaynes-Cummings model, which describes a two-level atom coupled to a single-mode cavity field in the large-detuning regime. This is achieved by introducing a transversal driving to the atom and then photonic nonlinearity is obtained. The eigen-energy spectrum of the system is obtained analytically, and the photon blockade effect is confirmed by numerically calculating the photon-number distributions and the equal-time second-order correlation function of the cavity field in the presence of system dissipations. We find that the photon blockade effect can be recovered at proper atomic and cavity-field drivings. This work will provide a new method to generate photon blockade in the dispersively coupled quantum optical systems.
We study multiphoton blockade and photon-induced tunneling effects in the two-photon Jaynes-Cummings model, where a single-mode cavity field and a two-level atom are coupled via a two-photon interaction. We consider both the cavity-field-driving and atom-driving cases, and find that single-photon blockade and photon-induced tunneling effects can be observed when the cavity mode is driven, while the two-photon blockade effect appears when the atom is driven. For the atom-driving case (the two-photon transition process), we present a criterion of the correlation functions for the multiphoton blockade effect. Specifically, we show that quantum interference can enhance the photon blockade effect in the single-photon cavity-field-driving case. Our results are confirmed by analytically and numerically calculating the correlation function of the cavity-field mode. Our work has potential applications in quantum information processing and paves the way for the study of multiphoton quantum coherent devices.
We present evidence of metastable rare quantum-fluctuation switching for the driven dissipative Jaynes-Cummings oscillator coupled to a zero-temperature bath in the strongly dispersive regime. We show that single-atom complex amplitude bistability is accompanied by the appearance of a low-amplitude long-lived transient state, hereinafter called `dark state, having a distribution with quasi-Poissonian statistics both for the coupled qubit and cavity mode. We find that the dark state is linked to a spontaneous flipping of the qubit state, detuning the cavity to a low-photon response. The appearance of the dark state is correlated with the participation of the two metastable states in the dispersive bistability, as evidenced by the solution of the Master Equation and single quantum trajectories.
We present a propagator formalism to investigate the scattering of photons by a cavity QED system that consists of a single two-level atom dressed by a leaky optical cavity field. We establish a diagrammatic method to construct the propagator analytically. This allows us to determine the quantum state of the scattered photons for an arbitrary incident photon packet. As an application, we explicitly solve the problem of a single-photon packet scattered by an initially excited atom.
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac oscillator and show that in the context of the $kappa$--deformed Poincare-Hopf algebra its Hamiltonian is non-Hermitian but having real eigenvalues. The non-Hermiticity steams from the $kappa$-deformed algebra. From the mapping in [Bermudez textit{et al.}, Phys. Rev. A textbf{76}, 041801(R) 2007], we propose the $kappa$-JC and $kappa$--AJC models, which describe an interaction between a two-level system with a quantized mode of an optical cavity in the $kappa$--deformed context. We find that the $kappa$--deformation modifies the textit{Zitterbewegung} frequencies and the collapse and revival of quantum oscillations. In particular, the total angular momentum in the $z$--direction is not conserved anymore, as a direct consequence of the deformation.
Employing the trace distance as a measure for the distinguishability of quantum states, we study the influence of initial correlations on the dynamics of open systems. We concentrate on the Jaynes-Cummings model for which the knowledge of the exact joint dynamics of system and reservoir allows the treatment of initial states with arbitrary correlations. As a measure for the correlations in the initial state we consider the trace distance between the system-environment state and the product of its marginal states. In particular, we examine the correlations contained in the thermal equilibrium state for the total system, analyze their dependence on the temperature and on the coupling strength, and demonstrate their connection to the entanglement properties of the eigenstates of the Hamiltonian. A detailed study of the time dependence of the distinguishability of the open system states evolving from the thermal equilibrium state and its corresponding uncorrelated product state shows that the open system dynamically uncovers typical features of the initial correlations.