We consider a minimal residual discretization of a simultaneous space-time variational formulation of parabolic evolution equations. Under the usual `LBB stability condition on pairs of trial- and test spaces we show quasi-optimality of the numerical approximations without assuming symmetry of the spatial part of the differential operator. Under a stronger LBB condition we show error estimates in an energy-norm which are independent of this spatial differential operator.
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic PDEs. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is compared to two related space-time discretization methods introduced in [IMA J. Numer. Anal., 33(1) (2013), pp. 242-260] by R. Andreev and in [Comput. Methods Appl. Math., 15(4) (2015), pp. 551-566] by O. Steinbach.
In this work, an $r$-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces that we consider are given as the spans of wavelets-in-time and (locally refined) finite element spaces-in-space. Numerical results illustrate our theoretical findings.
In this paper, we consider a parabolic problem with time-dependent heterogeneous coefficients. Many applied problems have coupled space and time heterogeneities. Their homogenization or upscaling requires cell problems that are formulated in space-time representative volumes for problems with scale separation. In problems without scale separation, local problems include multiple macroscopic variables and oversampled local problems, where these macroscopic parameters are computed. These approaches, called Non-local multi-continua, are proposed for problems with complex spatial heterogeneities in a number of previous papers. In this paper, we extend this approach for space-time heterogeneities, by identifying macroscopic parameters in space-time regions. Our proposed method space-time Non-local multi-continua (space-time NLMC) is an efficient numerical solver to deal with time-dependent heterogeneous coefficients. It provides a flexible and systematic way to construct multiscale basis functions to approximate the solution. These multiscale basis functions are constructed by solving a local energy minimization problems in the oversampled space-time regions such that these multiscale basis functions decay exponentially outside the oversampled domain. Unlike the classical time-stepping methods combined with full-discretization technique, our space-time NLMC efficiently constructs the multiscale basis functions in a space-time domain and can provide a computational savings compared to space-only approaches as we discuss in the paper. We present two numerical experiments, which show that the proposed approach can provide a good accuracy.
We study discretizations of Hamiltonian systems on the probability density manifold equipped with the $L^2$-Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on graph (lattice) with different weights are derived, which can be viewed as spatial discretizations to the original Hamiltonian systems. We prove the consistency and provide the approximate orders for those discretizations. By regularizing the system using Fisher information, we deduce an explicit lower bound for the density function, which guarantees that symplectic schemes can be used to discretize in time. Moreover, we show desirable long time behavior of these schemes, and demonstrate their performance on several numerical examples.
In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Fuhrer& Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this result is generalized to general second order parabolic PDEs with possibly inhomogenoeus boundary conditions, and plain convergence of a standard adaptive finite element method driven by the least-squares estimator is demonstrated. The proof of the latter easily extends to a large class of least-squares formulations.