Do you want to publish a course? Click here

Further results on a space-time FOSLS formulation of parabolic PDEs

100   0   0.0 ( 0 )
 Added by Gregor Gantner
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In [2019, Space-time least-squares finite elements for parabolic equations, arXiv:1911.01942] by Fuhrer& Karkulik, well-posedness of a space-time First-Order System Least-Squares formulation of the heat equation was proven. In the present work, this result is generalized to general second order parabolic PDEs with possibly inhomogenoeus boundary conditions, and plain convergence of a standard adaptive finite element method driven by the least-squares estimator is demonstrated. The proof of the latter easily extends to a large class of least-squares formulations.



rate research

Read More

We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic PDEs. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is compared to two related space-time discretization methods introduced in [IMA J. Numer. Anal., 33(1) (2013), pp. 242-260] by R. Andreev and in [Comput. Methods Appl. Math., 15(4) (2015), pp. 551-566] by O. Steinbach.
We propose a model reduction procedure for rapid and reliable solution of parameterized hyperbolic partial differential equations. Due to the presence of parameter-dependent shock waves and contact discontinuities, these problems are extremely challenging for traditional model reduction approaches based on linear approximation spaces. The main ingredients of the proposed approach are (i) an adaptive space-time registration-based data compression procedure to align local features in a fixed reference domain, (ii) a space-time Petrov-Galerkin (minimum residual) formulation for the computation of the mapped solution, and (iii) a hyper-reduction procedure to speed up online computations. We present numerical results for a Burgers model problem and a shallow water model problem, to empirically demonstrate the potential of the method.
We consider a minimal residual discretization of a simultaneous space-time variational formulation of parabolic evolution equations. Under the usual `LBB stability condition on pairs of trial- and test spaces we show quasi-optimality of the numerical approximations without assuming symmetry of the spatial part of the differential operator. Under a stronger LBB condition we show error estimates in an energy-norm which are independent of this spatial differential operator.
In this paper we introduce a new approach to compute rigorously solutions of Cauchy problems for a class of semi-linear parabolic partial differential equations. Expanding solutions with Chebyshev series in time and Fourier series in space, we introduce a zero finding problem $F(a)=0$ on a Banach algebra $X$ of Fourier-Chebyshev sequences, whose solution solves the Cauchy problem. The challenge lies in the fact that the linear part $mathcal{L} := DF(0)$ has an infinite block diagonal structure with blocks becoming less and less diagonal dominant at infinity. We introduce analytic estimates to show that $mathcal{L}$ is a boundedly invertible linear operator on $X$, and we obtain explicit, rigorous and computable bounds for the operator norm $| mathcal{L}^{-1}|_{B(X)}$. These bounds are then used to verify the hypotheses of a Newton-Kantorovich type argument which shows that the (Newton-like) operator $mathcal{T}(a) := a - mathcal{L}^{-1} F(a)$ is a contraction on a small ball centered at a numerical approximation of the Cauchy problem. The contraction mapping theorem yields a fixed point which corresponds to a classical (strong) solution of the Cauchy problem. The approach is simple to implement, numerically stable and is applicable to a class of PDE models, which include for instance Fishers equation, the Kuramoto-Sivashinsky equation, the Swift-Hohenberg equation and the phase-field crystal (PFC) equation. We apply our approach to each of these models and report plausible experimental results, which motivate further research on the method.
Relying on the classical connection between Backward Stochastic Differential Equations (BSDEs) and non-linear parabolic partial differential equations (PDEs), we propose a new probabilistic learning scheme for solving high-dimensional semi-linear parabolic PDEs. This scheme is inspired by the approach coming from machine learning and developed using deep neural networks in Han and al. [32]. Our algorithm is based on a Picard iteration scheme in which a sequence of linear-quadratic optimisation problem is solved by means of stochastic gradient descent (SGD) algorithm. In the framework of a linear specification of the approximation space, we manage to prove a convergence result for our scheme, under some smallness condition. In practice, in order to be able to treat high-dimensional examples, we employ sparse grid approximation spaces. In the case of periodic coefficients and using pre-wavelet basis functions, we obtain an upper bound on the global complexity of our method. It shows in particular that the curse of dimensionality is tamed in the sense that in order to achieve a root mean squared error of order ${epsilon}$, for a prescribed precision ${epsilon}$, the complexity of the Picard algorithm grows polynomially in ${epsilon}^{-1}$ up to some logarithmic factor $ |log({epsilon})| $ which grows linearly with respect to the PDE dimension. Various numerical results are presented to validate the performance of our method and to compare them with some recent machine learning schemes proposed in Han and al. [20] and Hure and al. [37].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا