Do you want to publish a course? Click here

SyGNS: A Systematic Generalization Testbed Based on Natural Language Semantics

76   0   0.0 ( 0 )
 Added by Hitomi Yanaka
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, deep neural networks (DNNs) have achieved great success in semantically challenging NLP tasks, yet it remains unclear whether DNN models can capture compositional meanings, those aspects of meaning that have been long studied in formal semantics. To investigate this issue, we propose a Systematic Generalization testbed based on Natural language Semantics (SyGNS), whose challenge is to map natural language sentences to multiple forms of scoped meaning representations, designed to account for various semantic phenomena. Using SyGNS, we test whether neural networks can systematically parse sentences involving novel combinations of logical expressions such as quantifiers and negation. Experiments show that Transformer and GRU models can generalize to unseen combinations of quantifiers, negations, and modifiers that are similar to given training instances in form, but not to the others. We also find that the generalization performance to unseen combinations is better when the form of meaning representations is simpler. The data and code for SyGNS are publicly available at https://github.com/verypluming/SyGNS.



rate research

Read More

In formal semantics, there are two well-developed semantic frameworks: event semantics, which treats verbs and adverbial modifiers using the notion of event, and degree semantics, which analyzes adjectives and comparatives using the notion of degree. However, it is not obvious whether these frameworks can be combined to handle cases in which the phenomena in question are interacting with each other. Here, we study this issue by focusing on natural language inference (NLI). We implement a logic-based NLI system that combines event semantics and degree semantics and their interaction with lexical knowledge. We evaluate the system on various NLI datasets containing linguistically challenging problems. The results show that the system achieves high accuracies on these datasets in comparison with previous logic-based systems and deep-learning-based systems. This suggests that the two semantic frameworks can be combined consistently to handle various combinations of linguistic phenomena without compromising the advantage of either framework.
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. NLP models built with the conventional paradigm, however, often struggle with generalization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that is equipped with the understanding of human-readable instructions that define the tasks, and can generalize to new tasks. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions and 193k task instances. The instructions are obtained from crowdsourcing instructions used to collect existing NLP datasets and mapped to a unified schema. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models can benefit from instructions to generalize across tasks. These models, however, are far behind supervised task-specific models, indicating significant room for more progress in this direction.
599 - Edward Grefenstette 2013
This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these contexts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.
Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems. In recent years, the advancements in multi-turn user interfaces necessitate the need for controlling and updating these structured representations given new sources of information. Although there have been many efforts focusing on improving the performance of the parsers that map text to graphs or parse trees, very few have explored the problem of directly manipulating these representations. In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing scene graph given a new users command. Our novel models based on graph-based sparse transformer and cross attention information fusion outperform previous systems adapted from the machine translation and graph generation literature. We further contribute our large graph modification datasets to the research community to encourage future research for this new problem.
Inspired by humans remarkable ability to master arithmetic and generalize to unseen problems, we present a new dataset, HINT, to study machines capability of learning generalizable concepts at three different levels: perception, syntax, and semantics. In particular, concepts in HINT, including both digits and operators, are required to learn in a weakly-supervised fashion: Only the final results of handwriting expressions are provided as supervision. Learning agents need to reckon how concepts are perceived from raw signals such as images (i.e., perception), how multiple concepts are structurally combined to form a valid expression (i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics). With a focus on systematic generalization, we carefully design a five-fold test set to evaluate both the interpolation and the extrapolation of learned concepts. To tackle this challenging problem, we propose a neural-symbolic system by integrating neural networks with grammar parsing and program synthesis, learned by a novel deduction--abduction strategy. In experiments, the proposed neural-symbolic system demonstrates strong generalization capability and significantly outperforms end-to-end neural methods like RNN and Transformer. The results also indicate the significance of recursive priors for extrapolation on syntax and semantics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا