Do you want to publish a course? Click here

A HINT from Arithmetic: On Systematic Generalization of Perception, Syntax, and Semantics

103   0   0.0 ( 0 )
 Added by Qing Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Inspired by humans remarkable ability to master arithmetic and generalize to unseen problems, we present a new dataset, HINT, to study machines capability of learning generalizable concepts at three different levels: perception, syntax, and semantics. In particular, concepts in HINT, including both digits and operators, are required to learn in a weakly-supervised fashion: Only the final results of handwriting expressions are provided as supervision. Learning agents need to reckon how concepts are perceived from raw signals such as images (i.e., perception), how multiple concepts are structurally combined to form a valid expression (i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics). With a focus on systematic generalization, we carefully design a five-fold test set to evaluate both the interpolation and the extrapolation of learned concepts. To tackle this challenging problem, we propose a neural-symbolic system by integrating neural networks with grammar parsing and program synthesis, learned by a novel deduction--abduction strategy. In experiments, the proposed neural-symbolic system demonstrates strong generalization capability and significantly outperforms end-to-end neural methods like RNN and Transformer. The results also indicate the significance of recursive priors for extrapolation on syntax and semantics.



rate research

Read More

In order to meet the diverse challenges in solving many real-world problems, an intelligent agent has to be able to dynamically construct a model of its environment. Objects facilitate the modular reuse of prior knowledge and the combinatorial construction of such models. In this work, we argue that dynamically bound features (objects) do not simply emerge in connectionist models of the world. We identify several requirements that need to be fulfilled in overcoming this limitation and highlight corresponding inductive biases.
Recently, deep neural networks (DNNs) have achieved great success in semantically challenging NLP tasks, yet it remains unclear whether DNN models can capture compositional meanings, those aspects of meaning that have been long studied in formal semantics. To investigate this issue, we propose a Systematic Generalization testbed based on Natural language Semantics (SyGNS), whose challenge is to map natural language sentences to multiple forms of scoped meaning representations, designed to account for various semantic phenomena. Using SyGNS, we test whether neural networks can systematically parse sentences involving novel combinations of logical expressions such as quantifiers and negation. Experiments show that Transformer and GRU models can generalize to unseen combinations of quantifiers, negations, and modifiers that are similar to given training instances in form, but not to the others. We also find that the generalization performance to unseen combinations is better when the form of meaning representations is simpler. The data and code for SyGNS are publicly available at https://github.com/verypluming/SyGNS.
Machine learning systems generally assume that the training and testing distributions are the same. To this end, a key requirement is to develop models that can generalize to unseen distributions. Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increasing interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. Great progress has been made in the area of domain generalization for years. This paper presents the first review of recent advances in this area. First, we provide a formal definition of domain generalization and discuss several related fields. We then thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. We categorize recent algorithms into three classes: data manipulation, representation learning, and learning strategy, and present several popular algorithms in detail for each category. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.
Despite the groundbreaking successes of neural networks, contemporary models require extensive training with massive datasets and exhibit poor out-of-sample generalization. One proposed solution is to build systematicity and domain-specific constraints into the model, echoing the tenets of classical, symbolic cognitive architectures. In this paper, we consider the limitations of this approach by examining human adults ability to learn an abstract reasoning task from a brief instructional tutorial and explanatory feedback for incorrect responses, demonstrating that human learning dynamics and ability to generalize outside the range of the training examples differ drastically from those of a representative neural network model, and that the model is brittle to changes in features not anticipated by its authors. We present further evidence from human data that the ability to consistently solve the puzzles was associated with education, particularly basic mathematics education, and with the ability to provide a reliably identifiable, valid description of the strategy used. We propose that rapid learning and systematic generalization in humans may depend on a gradual, experience-dependent process of learning-to-learn using instructions and explanations to guide the construction of explicit abstract rules that support generalizable inferences.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا