No Arabic abstract
Natural language to SQL (NL2SQL) aims to parse a natural language with a given database into a SQL query, which widely appears in practical Internet applications. Jointly encode database schema and question utterance is a difficult but important task in NL2SQL. One solution is to treat the input as a heterogeneous graph. However, it failed to learn good word representation in question utterance. Learning better word representation is important for constructing a well-designed NL2SQL system. To solve the challenging task, we present a Relation aware Semi-autogressive Semantic Parsing (MODN) ~framework, which is more adaptable for NL2SQL. It first learns relation embedding over the schema entities and question words with predefined schema relations with ELECTRA and relation aware transformer layer as backbone. Then we decode the query SQL with a semi-autoregressive parser and predefined SQL syntax. From empirical results and case study, our model shows its effectiveness in learning better word representation in NL2SQL.
Knowledgebase question answering systems are heavily dependent on relation extraction and linking modules. However, the task of extracting and linking relations from text to knowledgebases faces two primary challenges; the ambiguity of natural language and lack of training data. To overcome these challenges, we present SLING, a relation linking framework which leverages semantic parsing using Abstract Meaning Representation (AMR) and distant supervision. SLING integrates multiple relation linking approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledgebase. The experiments on relation linking using three KBQA datasets; QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.
We propose a large scale semantic parsing dataset focused on instruction-driven communication with an agent in Minecraft. We describe the data collection process which yields additional 35K human generated instructions with their semantic annotations. We report the performance of three baseline models and find that while a dataset of this size helps us train a usable instruction parser, it still poses interesting generalization challenges which we hope will help develop better and more robust models.
Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembling, and pairwise re-ranking based on a language model. We taxonomize the errors possible for the hierarchical representation, such as wrong top intent, missing spans or split spans, and show that the three approaches correct different kinds of errors. The best model combines the three techniques and gives 6.4% better exact match accuracy than the state-of-the-art, with an error reduction of 33%, resulting in a new state-of-the-art result on the Task Oriented Parsing (TOP) dataset.
In this work, we investigate the problems of semantic parsing in a few-shot learning setting. In this setting, we are provided with utterance-logical form pairs per new predicate. The state-of-the-art neural semantic parsers achieve less than 25% accuracy on benchmark datasets when k= 1. To tackle this problem, we proposed to i) apply a designated meta-learning method to train the model; ii) regularize attention scores with alignment statistics; iii) apply a smoothing technique in pre-training. As a result, our method consistently outperforms all the baselines in both one and two-shot settings.
Semantic parsing converts natural language queries into structured logical forms. The paucity of annotated training samples is a fundamental challenge in this field. In this work, we develop a semantic parsing framework with the dual learning algorithm, which enables a semantic parser to make full use of data (labeled and even unlabeled) through a dual-learning game. This game between a primal model (semantic parsing) and a dual model (logical form to query) forces them to regularize each other, and can achieve feedback signals from some prior-knowledge. By utilizing the prior-knowledge of logical form structures, we propose a novel reward signal at the surface and semantic levels which tends to generate complete and reasonable logical forms. Experimental results show that our approach achieves new state-of-the-art performance on ATIS dataset and gets competitive performance on Overnight dataset.