Do you want to publish a course? Click here

When and Why does a Model Fail? A Human-in-the-loop Error Detection Framework for Sentiment Analysis

117   0   0.0 ( 0 )
 Added by Zhe Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although deep neural networks have been widely employed and proven effective in sentiment analysis tasks, it remains challenging for model developers to assess their models for erroneous predictions that might exist prior to deployment. Once deployed, emergent errors can be hard to identify in prediction run-time and impossible to trace back to their sources. To address such gaps, in this paper we propose an error detection framework for sentiment analysis based on explainable features. We perform global-level feature validation with human-in-the-loop assessment, followed by an integration of global and local-level feature contribution analysis. Experimental results show that, given limited human-in-the-loop intervention, our method is able to identify erroneous model predictions on unseen data with high precision.

rate research

Read More

The development of neural networks and pretraining techniques has spawned many sentence-level tagging systems that achieved superior performance on typical benchmarks. However, a relatively less discussed topic is what if more context information is introduced into current top-scoring tagging systems. Although several existing works have attempted to shift tagging systems from sentence-level to document-level, there is still no consensus conclusion about when and why it works, which limits the applicability of the larger-context approach in tagging tasks. In this paper, instead of pursuing a state-of-the-art tagging system by architectural exploration, we focus on investigating when and why the larger-context training, as a general strategy, can work. To this end, we conduct a thorough comparative study on four proposed aggregators for context information collecting and present an attribute-aided evaluation method to interpret the improvement brought by larger-context training. Experimentally, we set up a testbed based on four tagging tasks and thirteen datasets. Hopefully, our preliminary observations can deepen the understanding of larger-context training and enlighten more follow-up works on the use of contextual information.
307 - Hang Yan , Junqi Dai , Tuo ji 2021
Aspect-based Sentiment Analysis (ABSA) aims to identify the aspect terms, their corresponding sentiment polarities, and the opinion terms. There exist seven subtasks in ABSA. Most studies only focus on the subsets of these subtasks, which leads to various complicated ABSA models while hard to solve these subtasks in a unified framework. In this paper, we redefine every subtask target as a sequence mixed by pointer indexes and sentiment class indexes, which converts all ABSA subtasks into a unified generative formulation. Based on the unified formulation, we exploit the pre-training sequence-to-sequence model BART to solve all ABSA subtasks in an end-to-end framework. Extensive experiments on four ABSA datasets for seven subtasks demonstrate that our framework achieves substantial performance gain and provides a real unified end-to-end solution for the whole ABSA subtasks, which could benefit multiple tasks.
100 - Haiyun Peng , Lu Xu , Lidong Bing 2019
Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from Waiters are very friendly and the pasta is simply average could be (Waiters, positive, friendly). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.
Most recent works on sentiment analysis have exploited the text modality. However, millions of hours of video recordings posted on social media platforms everyday hold vital unstructured information that can be exploited to more effectively gauge public perception. Multimodal sentiment analysis offers an innovative solution to computationally understand and harvest sentiments from videos by contextually exploiting audio, visual and textual cues. In this paper, we, firstly, present a first of its kind Persian multimodal dataset comprising more than 800 utterances, as a benchmark resource for researchers to evaluate multimodal sentiment analysis approaches in Persian language. Secondly, we present a novel context-aware multimodal sentiment analysis framework, that simultaneously exploits acoustic, visual and textual cues to more accurately determine the expressed sentiment. We employ both decision-level (late) and feature-level (early) fusion methods to integrate affective cross-modal information. Experimental results demonstrate that the contextual integration of multimodal features such as textual, acoustic and visual features deliver better performance (91.39%) compared to unimodal features (89.24%).
Aspect-based Sentiment Analysis (ABSA), aiming at predicting the polarities for aspects, is a fine-grained task in the field of sentiment analysis. Previous work showed syntactic information, e.g. dependency trees, can effectively improve the ABSA performance. Recently, pre-trained models (PTMs) also have shown their effectiveness on ABSA. Therefore, the question naturally arises whether PTMs contain sufficient syntactic information for ABSA so that we can obtain a good ABSA model only based on PTMs. In this paper, we firstly compare the induced trees from PTMs and the dependency parsing trees on several popular models for the ABSA task, showing that the induced tree from fine-tuned RoBERTa (FT-RoBERTa) outperforms the parser-provided tree. The further analysis experiments reveal that the FT-RoBERTa Induced Tree is more sentiment-word-oriented and could benefit the ABSA task. The experiments also show that the pure RoBERTa-based model can outperform or approximate to the previous SOTA performances on six datasets across four languages since it implicitly incorporates the task-oriented syntactic information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا